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1. INTRODUCTION 

Many asset pricing models in the finance literature explain an asset's expected return 

by its covariance with other assets' returns. Although this approach may generate 

successful empirical results, it does not answer the question of what real risks cause 

an asset's expected return to vary. In the past two decades there has been a growing 

body of research relating financial asset returns with macroeconomic risks. Most of the 

theoreticral and empirical studies in this area are carried out within two widely used 

frameworks: the consiunption-based asset pricing model (CCAPM) and the production-

based asset pricing model (PCAPM). 

The consimaption-based asset pricing model (CCAPM) is based on the intertemporal 

capital asset pricing model of Lucas (1978). The model assiunes that there is a represen­

tative consumer in the economy and output evolves according to an exogenous Markov 

process. The representative consumer maximizes her additive and time-separable life­

time utility subject to a budget constraint. At each time period, the total endowment 

is allocated for current consimaption and financial investment. The first-order condition 

characterizing the optimal consumption and investment decisions relates the asset retiu-n 

to the intertemporal marginal rate of substitution of consmnption (IMRS). In addition, 

it can be shown that the risk premiimi of any financial asset is proportional to the neg­

ative of the covariance of the return with the IMRS. Within the CCAPM framework, 

the presence of macroeconomic risks can be inferred from their effects on consimaption 

decisions. 

Despite the appealing theoretical features, numerous empirical tests in the Utera-
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tiire have not provided much supporting evidence for the CCAPM. Hansen and Single­

ton (1983) estimate and test a single good, representative consiuner model with time-

additive and constant relative risk aversion (CRR) preferences. The asset retiuns used 

to construct orthogonality conditions include the equally weighted average retiuns on 

all stocks listed on the New York Stock Exchange (NYSE), the value-weighted aver­

age retiu-n on stocks on the NYSE, the equally weighted retiuris on the stocks of three 

two-digit SEC industries, and the nominal retiuns on risk-free bonds. The empirical 

results show that the orthogonality conditions are rejected at the 5 percent significance 

level for almost all sets of returns. The authors conclude that the conmion stochas­

tic discount factor defined as the representative consumer's IMRS fails to capture the 

relative risk structure of stocks versus bonds. Following Hansen and Singleton, more 

extensive tests on CCAPM have been conducted by allowing for consumption durabil­

ity (Dunn and Singleton (1986)), choice of leisure (Mankiw, Rotemberg, and Summers 

(1985) and Eichenbaum, Hansen, and Singleton (1988)), structural breaks (Ghysels and 

Hall (1990)), habit persistence (Person and Constantinides (1991)), and nonexpected 

utility preferences (Epstein and Zin (1991)), etc. However, the basic conclusions are 

the same: The representative CCAPM can not explain the relative risk stnicture of 

alternative asset such as the returns on stocks and bonds or the returns on bonds of 

different maturities. The empirical failure of CCAPM is mostly due to the fact that 

nondurable consumption growth barely moves over the business cycle, and that it is 

poorly correlated with stock returns. 

An alternative way to study the relationship between asset returns and macroeco-

nomic variables is the production-based asset pricing model (PCAPM), originally de­

veloped by Brock. Brock (1982) extends the asset pricing model of Lucas (1978) to 

incorporate a nontrivial investment decision by modifying the stochastic growth model 

of Brock and Mirman (1972). Thus, the general equilibrium PCAPM can be viewed as a 

natural extension of the CCAPM by endogenizing the production process of an economy. 
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The PCAPM hnks asset returns to the marginal rate of transformation and infers the 

presence of macroeconomic risks from their effects on firms' investment decisions. 

Compared with the empirical CCAPM Uterature, the empirical PCAPM literature is 

relatively small. Following Cochrane (1991), there has been a growing body of research 

testing empirical impUcations of the PCAPM. Why should we care about the empirical 

performance of PCAPM? Part of the reason is due to the fact that models focusing 

e.xclusively on the financial market and the CCAPM have not generated very satisfactory 

empirical results. Moreover, empirical study on PCAPM can shed lights on the following 

fimdamental and important questions. How closely are the financial sector and the 

real sector related? Does physical capital investment convey crucial information on the 

pricing of financial assets? Is it necessary for economists to expUcitly address the pricing 

impacts of key production characteristics in asset pricing models? In this study, I will 

address the above questions using industry-level data. 

Before proceeding, I define two terminologies that will be used throughout the paper; 

physical investment return and equity return. The physical investment return is defined 

as the one-period gross rate of retiurn on investing one dollar in physical capital (e.g., 

machine, office building, patent, etc.). The equity retiu-n is defined as the one-period 

gross rate of retiu-n on investing one dollar in financial seciurity or equity portfolio. 

Recent empirical studies on PCAPM include Cochrane (1991), Sharathchandra (1993), 

Bakshi, Chen and Naka (1995), Cochrane(1996), Kasa (1997), and Porter (1999). A de­

tailed review on both the theoretical and the empirical literatiure about the PCAPM 

is provided in chapter 2. The existing empirical research on PCAPM has focused on 

using one or two aggregate production technologies and the corresponding physical in­

vestment retixrn series to explain the risk structure of either aggregate or cross-sectional 

equity retiurns. For example, Cochrane (1996) considers two types of physical invest­

ment returns (nonresidential and residential investment retiu-ns) as factors to explain 

the variation in the expected returns of stock portfoUos with different market capital­
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ization. However, very few studies have been conducted in the literature linking indus­

try physical investment returns to the corresponding industry equity portfoUo retiums. 

It is well known that different industries have different production characteristics and 

that equity returns vary across industries. Therefore, investigating the performance of 

PCAPM using cross-industry data is both intuitive and relevant. Specifically, I address 

the question of whether industry ph3rsical investment retiuns contain enough informa­

tion to explain the variation in expected retiums of the corresponding industry equity 

portfoUos. Using industry-level physical investment retiuns has the following advantage 

over the traditional approach of relying on only one or two aggregate production tech­

nologies. The PCAPM implies that the variation in equity retiurns is driven by the effect 

of macroeconomic risks (e.g., productivity shocks) on the firm's physical capital invest­

ment. The magnitude of such effect is completely determined by the firm's production 

characteristics. Facing the same economy-wide shock, firms with different technologies 

will react quite differently. By allowing each industry to use a different technology, I 

essentially capture such heterogeneity and avoid losing useful pricing information due 

to inappropriate aggregation. Hence, the estimation and testing results are subject to 

fewer specification errors. 

One dominant approach to empirically testing the PCAPM is to examine the validity 

of a factor pricing model for equity retiurns. Specifically, the only factors used to price 

equities are the physical investment returns. In other words, such a factor pricing model 

implies that the stochastic discoimt factor can be written as a linear combination of the 

physical investment returns. Cochrane (1996) initially adopts this approach and uses the 

generalized method of moments (GMM) to conduct parameter estimation and hypothe­

sis test. The above approach suffers from two drawbacks. First, the linear factor pricing 

model may not be consistent with the spirit of no-arbitrage. The existence of the linear 

factor pricing model is guaranteed by the law of one price emd an important assumption 

(the spanning assumption) stated below. However, the law of one price is much less 
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restrictive than the absence of arbitrage. Even if the law of one price is satisfied, there 

may still be arbitrage opportunities in the economy. Therefore, the constructed stochas­

tic discoimt factor (a Unear combination of physical investment retiuns) may take on 

negative values. This is not a desirable property for any asset pricing model. Second, es­

timating the factor pricing model in the GMM framework provides limited flexibility to 

expand the set of factors one wants to include in the stochastic discoimt factor. To avoid 

potential overparameterization problem in the GMM estimation, Cochrane selects only 

two aggregate production technologies to construct physical investment return series as 

factors. Hence, the above approach may suffer from a joint hypothesis test problem. 

Once the model is rejected, one is not clear whether rejection comes from the factor 

pricing model itself or from the inappropriate aggregation of production technologies. 

Further, the empirical results may also be sensitive to physical investment retium series 

c:onstructed from different aggregations of production technologies. 

To construct a testing procedure inherently consistent with the spirit of no-arbitrage 

and to alleviate the joint hypothesis test problem by utilizing all of the relevant pricing 

information contained in industry-level physical investment return series, I propose an 

alternative method to investigate the pricing relationship between physical investment 

returns and equity returns using cross-industry data. Instead of testing the validity of the 

physical investment factor pricing model, I examine another closely related hypothesis, 

namely the spanning assumption. It states that the payoff space of physical investment 

spans that of financial securities. The relationship between the spanning assimiption and 

the physical investment factor pricing model can be stated as follows. The law of one 

price implies that there always exists a discoimt factor that is a linear combination of the 

physical investment returns and the equity returns and that prices both. However, if one 

is willing to assume that financial securities offer no additional spanning opportunities 

on the payoff space beyond those offered by physical capital investment, as stated in 

the spanning assumption, then one can express the stochastic discoimt factor as a linear 
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combination of the physical investment returns only. Hence, the validity of the factor 

pricing model crucially depends on the validity of the spanning assiunption. If the 

spanning assimiption can not be rejected, then the data do not provide evidence against 

the physical investment factor pricing model. However, if the spanning assimiption is 

rejected, then the factor pricing model will not hold, and one may have to look for new 

approaches to further studying the performance of the PCAPM or reject the PCAPM 

altogether. 

Why should the payoff space of physical capital investment span the payoff space of 

financial securities? In general, physical investment and financial investment are just 

alternative ways of transforming goods across dates and states. If we assiune that the 

financial seciuities traded on the New York Stock Exchange (NYSE) are claims to dif­

ferent combinations of M production technologies, then no-arbitrage constraints imply 

that the payoff space of physical capital investment should be exactly the same as the 

payoff space of financial securities in the absence of any market frictions (Cochrane 

(1991) and Porter (1999)). Hence, the most straightforward way to test the sparming 

assumption is to examine whether we can replicate the actual payoffs of financial se­

curities by constnicting the payoff space of physical capital investment. However, such 

approach is almost impossible to be implemented empirically due to the following two 

reasons. First, there is no way to guarantee that the selected production technologies 

and financial securities are able to span the entire payoff spaces of physical investment 

and financial investment. The sets of physical investment returns and equity returns 

included in the empirical study are most Ukely to span different parts of the payoff 

space. Sec;ond, even if we successfully repUcate the entire payoff spaces of physical capi­

tal investment and financial investment, various market frictions (e.g., transaction costs) 

between the two markets may also easily break up the identity of the two payoff spaces. 

Therefore, instead of attempting to replicate the actual payoffs of financial investment 

by constructing the payoff space of physical capital investment, I will focus on exam­
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ining whether one cein infer all the relevant information necessary for pricing financial 

securities from physical Investment returns. The above pricing relationship is an imme­

diate implication of the spanning assumption and the PCAPM. The PCAPM implies 

that both the time-series and cross-sectional variations in equity returns are determined 

by the real macroeconomic risks through their effects on firms' physical capital invest­

ment. Hence, appropriately constructed physical investment returns should convey all 

the crucial information necessarj' for pricing the corresponding financial securities. On 

the other hand, the time-series and cross-sectional variations in equity returns should 

also reflect such pricing information. 

To empirically study the pricing relationship between physical investment returns 

and eciuity retiuns, I propose a three-step procediure based on entropic principles and 

no-arbitrage constraints. The spanning assumption and no-arbitrage constraints jointly 

imply that any state price probability density (or risk-neutral probabihty measure) cor­

rectly pricing the physical investment retiums should also be able to price the equity 

returns. Therefore, one natural way to test the validity of the spanning assimiption is to 

recover the state price probability density from the physical investment retiun data, and 

e.xamine whether it is consistent with the corresponding equity retiums. As shown in 

chapter 4, the state price probability densities for both the physical investment market 

and the stock market can be recovered and compared by means of entropic principles. 

Focusing on the state price density instead of the stochastic discoimt factor allows me 

to avoid imposing parametric restrictions on the form of the stochastic discoimt fac­

tor. Hence, the nonparametric procedure using entropic principles is subject to fewer 

specification errors. Moreover, the estimated state price density derived from solving a 

minimum cross-entropy problem is by construction consistent with the absence of ar­

bitrage. The data used in empirical testing includes physical investment return series 

and equity return series for each of the following six industries: mining, constniction, 

manufacturing, transportation, conunimication, cmd public utilities. Empirical results 
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show that the state price density recovered from the physical investment returns can be 

used to correctly (in statistical sense) price the corresponding equity retiuns. Further 

examination shows that the above result is quite robust for a wide range of produc­

tion parameters and different adjustment cost fimction forms. This provides supporting 

evidence that the spaiming assiunption holds at the cross-industry level. 

One immediate implication of the above result is that physical capital investment 

contains crucial, if not exclusive, information about the effect of macroeconomic risks 

on financial asset pricing. Hence, any asset pricing model aiming to explain the cross-

sectional variations in equity returns should at least captm-e such information. The 

model should either expUcitly incorporate the presence of macroeconomic risks (e.g., 

productivity shock) affecting firms' physical capital investment or use appropriate prox­

ies to capture such effect. This may provide an explanation for the empirical failure of 

the Capital Asset Pricing Model (CAPM) and the CCAPM. The traditional CAPM can 

be viewed fis a linear factor pricing model with the market retiun as the only factor. In 

the context of PCAPM, market retiu-n may also be interpreted as a retxum generated 

by one aggregate production technology. Following the milestone papers of Markowitz 

(1952, 1959), Sharpe (1964), and Lintner (1965), niunerous studies have emerged to 

test the empirical performance of the CAPM. Gibbons (1982) and Fama and French 

(1992) document the evidence that the traditional CAPM fails to explain the cross-

sectional variations in stock returns. The empirical faiku-e of the CAPM may be due 

to the fact that using one highly aggregated return (market retiun) as the only factor 

fails to capture some important intertemporal physical investment opportimities in the 

economy. In section 7.2, I present empirical evidence that the performance of linear 

factor pricing models are indeed sensitive to different levels of aggregation of the factors. 

Compared to the traditional CAPM, the empirical performance of the CCAPM is even 

more disappointing despite the fact that the model intends to capture the presence of 

macroeconomic risks through their effects on consiunption decisions. In this case, con­
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sumption change may just be a bad proxy for the effects of macroeconomic risks since 

nondiirable consimiption growth bsirely moves over the business cycle. 

Another implication of the empirical findings in this study is that it is useful to 

develop asset pricing models that incorporate key characteristics in the production sector 

of the economy. For decades financial economists have focused most of their attention 

on the financial sector of the economy while developing asset pricing models. Relatively 

little effort has been made to expUcitly model the pricing impacts of key production 

characteristics, e.g., the cost of adjusting capital stocks. Empirical studies (e.g., Malkiel, 

Fiurstenberg and Watson (1979)) have dociunented that adjustment cost has important 

impact on firm's physical capital investment decision. Since one central message from 

my study is that physical capital investment conveys crucial information on financial 

asset pricing, adjustment cost must have nontrivial impact on the prices of financial 

seciurities. The existence of adjustment cost impUes that it is costly for a firm to adjust 

its capital stock. Hence, in response to a productivity shock, industries with higher 

adjustment cost adjust their capital stocks in a more sluggish manner than industries 

with lower adjustment cost. Since physical capital investment market and financial 

market are closely related, the above pattern exhibits itself in financial market with 

the following form: The equity prices for industries with higher adjustment cost exhibit 

more persistence than the equity prices for industries with lower adjustment cost. Basu 

(1987) makes a nice attempt to examine the impact of adjustment cost on the pricing, risk 

premia, and volatihty of risky assets in an extended Brock's (1982) general equilibrium 

model. Clearly, models explicitly incorporating key production characteristics will have 

much richer implications on financial asset pricing than models exclusively focusing on 

the financial sector of the economy. More theoretical and empirical works need to be done 

to examine whether such models can capture both the time series and cross-sectional 

variations in expected equity retiu-ns. 

In summary, my work contributes to the existing literatiure in three ways. First, I 
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conduct an extensive cross-indiistry study on the performance of PCAPM, which has 

not been thoroughly explored at the industry level. Specifically, I examine whether the 

payoff space of physical capital investment spans the payoff space of financial assets. 

Empirical results show that the state price density recovered from physical investment 

returns can be used to correctly price the corresponding equity returns. This provide 

supporting evidence for the spanning assumption and the phj'sical investment factor 

pricing model. Second, instead of following the traditional approach of testing a Unear 

physical investment factor pricing model, I propose an alternative procedure for testing 

the pricing relationship between physical investment retiuiis and equity retiurns based on 

entropic principles. The proposed method is inherently consistent with the spirit of no-

arbitrage while the traditional approach leads to a stochastic discoimt factor that may 

take negative values. Moreover, the new method provides more flexibility on efficiently 

extracting information on the production side of the economy than the traditional ap­

proach, and thus alleviates the joint hypothesis test problem and specification errors. 

Moreover, the proposed testing procediure is not restricted to test the implications of the 

PCAPM. It can be easily extended to study the pricing relationship between any two 

sets of asset returns. Third, the empirical residts highlight the fact that physical capital 

investment conveys important information on financial asset pricing. Hence, to explain 

both the time-series and cross-sectional variations in equity retiurns, economists may 

ha\-e to explicitly model the impact of key production characteristics on asset prices. 

The remaining of the paper is organized as follows. Chapter 2 provides a detailed 

review on the theoretical and empirical literatiue of the PCAPM. Chapter 3 derives the 

producer's first-order condition and a specific form of physical investment retiu^n. After 

introducing the physical investment factor pricing model and the spanning assiunption 

in chapter 4, I formally presents the procedure for testing the spanning assiunption 

within the entropic framework. Chapter 5 contains detailed data description and the 

construction of physical investment returns. Chapter 6 reports the empirical results and 
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robustness check. Chapter 7 tests the validity of the physical investment factor pricing 

model iising the GMM approach and discusses how the state price density approach is 

related to the traditional approach. Chapter 8 conclxides the dissertation with smmnary 

of results and discussion of future research. 
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2. LITERATURE REVIEW 

In this chapter, I provide a detailed review on both the theory and the empirical 

tests of the PCAPM. 

2.1 Theory of the PCAPM 

The general eqiiihbriimi PCAPM should not be viewed as a substitute to the CCAPM. 

In fact they are complementary since the PCAPM is a natural extension of the CCAPM 

by endogenizing the production process of an economy. Brock (1982) extends the as­

set pricing model of Lucas (1978) to incorporate a nontrivial investment decision by 

modifying the stochastic growth model of Brock and Mirman (1972). 

In Brock's model, the households own the initial capital stocks and competitive firms 

rent crapital from households at a market-determined rental rate. Each firm issues one 

perfectly divisible equity share, representing claims to the firm's future profits. The 

representative household maximizes her intertemporal adchtive expected utility. In each 

period, she decides the amoimt of goods to consume, the amoimt of capital to invest, 

and the amoimt of equity shares to hold for the next period subject to her ciu^rent 

budget constraint. There are a total of n firms in the economy, and each firm is allowed 

to have its own production technology. The objective of each firm is to maximize its 

current period profits by making optimal capital investments. At the end of each period, 

firms sell output, pay rents to the owners of the capital, pay dividends to shareholders, 

and return the imdepreciated capital to their owaiers. The information stnictiure of the 
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economy is as follows. All agents observe the reaUzation of the economy-wide technology 

shock in each period. However, the households have to decide the allocation of capital 

stock across firms before the realization of technology shock and rental rates, while the 

firms decide how much capital to invest after observing the rental rates. Finally, for the 

above asset pricing model with production and capital accvmiulation, Brock defines a 

recursive competitive equihbrium with rational expectations. 

The household's problem can be solved by stochastic dynamic programming tech­

niques. The first-order conditions relate both the rate of return from lending capital 

goods and the rate of retiun from piurchasing equity shares to the IMRS. The intuition 

behind this is obvious. Since physical capital investment and financial investment are 

just alternative ways to transform goods across dates and states, they should be priced 

by the same stochastic discoimt factor if no arbitrage opportimities are allowed. In this 

model, the stochastic discoimt factor is just the IMRS. Fmthermore, using the results 

from the one-sector optimal growth model and applying a fixed-point contraction theo­

rem, the equilibriiun rental rates, the equilibrium dividends, and the equihbriimi equity 

price can be solved as time-invariant fimctions of the economy-wide state N'ariables: the 

pre-determined capital stock and the realized technology shocks. One immediate impU-

cation from this result is that the variations in equity returns are driven by the efi'ect 

of macroeconomic risks on the firms' physical capital investment. Thus, information 

contained in physical capital investment may be valuable to capture both the time series 

and cross-sef:tional variations in equity returns. 

2.2 Empirical Tests of the PCAPM 

To empirically test a PCAPM, one can adopt either a general equilibriimi approach 

or a partial equilibriima approach. The general equilibriiun approach requires one to 

specify both the consiuner side and the producer side of the economy. Although this 
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approach is consistent with the Brock's (1982) general equilibrium model, it requires 

imposing restrictions on preference assumptions in order to derive testable formulas. 

Since the general eqiiiUbriimi model includes the consimaption-based model, the empiri­

cal test^ have to resolve all the specification issues and empirical difficulties encoimtered 

in the empirical CCAPM literature. Moreover, it is not clear why adding a nontrivial 

production sector into the CCAPM will necessarily bring us a greater empirical success. 

Once the model is rejected, the rejection may be due to the rejection of PCAPM specif­

ically, or due to the rejection of preference restriction, or both. Therefore, the general 

equilibriiun approach is subject to greater specification problems. On the other hand, 

the partial equihbriimi approach only focuses on the producer's optimization problem 

and relates asset retiums to the firm's marginal rates of tremsformation. This approach 

does not require the specification of the rest of the economic environment, and thus 

is less restrictive than its general equilibrium coimterpart. However, imposing fewer 

restrictions comes at a cost. The partial equilibriiun approach does not present a struc­

tural explanation as to why and how the factors affecting physical investment retiuns 

also affect equity retiuns. Hence, once the model is rejected, it is difficult to isolate the 

source of the rejection. 

2.2.1 The General Equilibrium Test 

Sharathchandra (1993) is the ordy empirical study in the literature adopting a general 

equilibrium approach. The model studied in his paper is a simplified version of Brock's 

(1982) general equilibrium model. The first-order conditions relate both the equity 

return and the physical investment return to the IMRS. To derive a testable formula, 

Sharathchandra further assumes that the representative consumer's preferences can be 

described by logarithmic utiUty. With logarithmic utility, the consumer always consiunes 

a constant proportion of her total wealth. It can be shown that, in equilibrium, the 

stoc;hastic discount factor (or the IMRS) is equivalent to the inverse of the eciuity return. 
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Therefore the firm's first order condition (also called Euler equation) can be expressed 

as El ~ represent the equity return and the 

physical investment retiun, respectively. The physical investment retiun is expressed 

as a fimction of the luiknown production parameter. The above Euler equation is then 

estimated and tested by means of the GMM proceditre. Using the quarterly equity 

retiurn and physical capital investment data for the entire U.S. economy from 1948 to 

1990, the author concludes that the model can not be rejected. However, the supporting 

evidence provided by Sharathchandra should be interpreted with caution. First, the 

empirical test is based on a very restrictive assumption on the consxuner's preferences, 

and thus may be sensitive to misspecification. Second, the model ignores the existence 

of adjustment costs. As argued in Cochrane (1991), adjustment costs are necessary to 

produce a time series variation in physical investment retiums similar to that in stock 

returns. 

2.2.2 The Partial Equilibrium Tests 

For the reason pointed out at the begirming of this section, the empirical Uteratiure 

about the PCAPM has been dominated by partial equilibriiun approaches. Broadly 

speaking, the partial equiUbriiun tests can be classified into two groups. One group 

of tests focus on the time series relationship between physical investment returns and 

ecjuity returns. These studies investigate the hypothesis that the physical investment 

return should be equal to the equity return in every state of the world. The repre­

sentative studies include Cochrane (1991), Bakshi, Chen, and Naka (1995), and Porter 

(1999). The other group of tests focuses on the pricing relationship between physical 

in\'estment retiuns and equity retiuns. Particularly, they examine whether the physical 

investment retiurns contain sufficient information to correctly price the corresponding 

equity returns.The representative studies include Cochrane (1996) and Kasa (1997). 

Cochrane (1991) studies the empirical Unkage between the time-series variation in 
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stock retiirns and that in physical investment retiirns by using aggregate U.S. data from 

1947 to 1987. Assuming complete markets and linear homogeneous production emd ad­

justment cost fimctions, the producer's first-order condition implies that, in equilibriiun, 

the firm's investment rate of retiun should be equal to its stock rate of retiun ex post, in 

every state of nature. Clearly, any attempt to directly test the above hypothesis is very 

challenging. Even if the theory is correct, the noise in the physical capital investment 

data will almost surely lead to the rejection of the hypothesis. 

Instead of conducting a direct test, Cochrane exploits the following LmpUcation of 

the equivalence of physical investment returns and equity retm^is: If the null hypothesis 

is correct, then the coefficients in regressions of the equity retiuns and the physical 

investment retiums on any set of variables should be equal. To empirically test this 

theoretical implication, Cochrane (1991) conducts three types of regression tests on the 

physical investment retiums and the equity returns. The physical investment retiurns are 

constructed from gross fixed private domestic investment data, and the equity retiuns 

are computed as the gross rate of retiuns on CRSP value-weighted NYSE portfolio. 

The first test regresses ciurent physical investment returns and stock retiuns on a set of 

forecasting v^ariables dated in the past. These variables have been conventionally used in 

the literature to predict stock returns. The regression results show that the forecasts of 

physical investment returns and stock returns appear to be the same for most forecasting 

variables. The second test regresses the current physical investment and stock returns 

on the same set of forecasting variables dated in the futiure. The regression results 

show that both returns exhibit similar association with subsequent economic activity. 

As a final test, Cochrane regresses the two retiuns on past, contemporaneous, and 

subsequent investment/capital ratios. Although the two returns exhibit similar basic 

pattern of relationship with investment/capital ratios, the regression coefficients appear 

to be different from each other. In summary, Cochrane concludes that the physical 

investment retiuns and the stock returns are indeed closely linked to each other. 
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Bakshi, Chen, and Naka (1995) test a discrete-time PCAPM by using the quarterly 

Japanese physical investment return and stock retiuTi data from 1972 to 1990. The model 

studied is similar to the one in Cochrane (1991), except that the marginal product of 

capital is allowed to vary over time. Allowing for time-varying marginal product of 

capital implies that the time-variation in physical investment returns is driven by both 

investment/capital ratios and the marginal product of capital. Three types of empirical 

tests are carried out in the paper. Similar to Cochrane (1991), the first test regresses the 

physical investment returns and the stock returns on a common set of forecasting variable 

dated in the past. The estimated regression coefficients on each forecasting variable are 

found to be similar in magnitude for both regressions. The second test examines the 

predicting ability of the physical investment retiums and the equity retiuns on futiu^e 

GNP growth and capital investment growth. The regression results show that both the 

past physical investment returns and the past equity retiuns have significant predicting 

power on futiure real activity. However, the forecasting ability of the equity retiums is 

better than that of the physical investment returns. As a final test, the authors conduct 

an Etiler equation-based test investigating whether the physical investment retiurns and 

the stock market returns are priced similarly. Similar to Sharathchandra (1993), the 

conditional moment condition involves using the inverse of the stock market return as 

the stochastic discoimt factor to price physical investment returns. The J-statistics from 

GMM estimation indicates that the model can not be rejected. Overall, the empirical 

findings provide supportive evidence for the PCAPM. 

Porter (1999) is the only paper in the literature attempting to link industry physical 

investment returns to industry equity returns. The study modifies the model in Cochrane 

(1991) to include a planning phase for physical capital investment. The inclusion of the 

time-to-plan reflects the fact that there is a time lag between investment decision and 

the actual implementation of the investment. With this modification, equity returns 

are no longer a fimction of current investment expenditures, but are a fimction of cur­
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rent investment decisions and the residting future expenditures. Porter then applies 

the model to each of the 25 industries formed on the basis of two-digit and three-digit 

SIC code iising annual physical investment and equity data from 1956 to 1996. Under 

the assiunption of a constant time-to-plan across industries, Porter constructs physical 

investment return series adjusted for time-to-plan and equity return series adjusted for 

temporal aggregation. He finds that adjusting for time-to-plan and temporal aggrega­

tion greatly improves the correlation between the physical investment retiurns and the 

equity returns. Further, he regresses the equity portfoUo returns on contemporaneous 

physical investment returns for each of the 25 industries, and finds that the equivalence 

relationship between the two retiirn series can not be rejected for 16 out of 25 industries. 

One important contribution of Porter's study is that time-to-plan and temporal ag­

gregation may have nontrivial impacts in examining the time-series relationship between 

physical investment returns and equity returns. Moreover, Porter (1999) provides some 

useful insights into the Unkage between industry physical investment retiuTis and indus­

try equity portfolio retiuns. However, the method adopted by Porter limits the study's 

ability to answer several deeper questions. First, although time-to-plan is a realistic 

consideration, and may be crucial in determining the correlation between physical in­

vestment returns and equity returns, it is also a parameter very difficidt to estimate 

empirically. Assiuning a constant time-to-plan across industries is not quite realistic, 

and it is not clear whether the estimated correlation is sensitive to different specifica­

tions of time-to-plan. Second, Porter's study ignores the interdependence of both equity 

returns and physical investment returns among different industries by conducting the 

empirical test one industry at a time. Such an approach makes the study imable to reveal 

the relative importance of an industry's physical investment return in pricing the cross-

industry equity returns. Third, although empirical results provide some evidence for the 

eciuivaleric'e of equity and physical investment retiu-ns, they also provide evidence for the 

rejection of the equivalence relationship. About 36 percent of the industries included in 
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the study reject the theory. Porter's study does not provide a rigoroiis statistical test 

for determining whether to reject the model when all the industries are considered. 

Clearly, direct tests of the equivalence between physical investment returns and eq­

uity returns are very difficult to implement empirically. Theoretical conditions implying 

such equality (state by state) are also quite stringent (see Restoy and Rockinger (1994)). 

Market imperfections, noisy data, and approximations in production technologies are all 

likely to break up such equality. Hence, it is not siu^jrising that about one third of the 

industries in Porter's study reject the null hypothesis despite all the efforts of adjusting 

for time-to-plan and temporal aggregation. Partly due to the above reasons, another 

group of partial equihbrixmi tests take a different route. They explore the pricing rela­

tionship between physical investment retiuns and equity retiums by testing the absence 

of arbitrage or consistent pricing between the two sets of retiuns by constructing appro­

priate stochastic discoimt factors. The null hypothesis examined in these tests is less 

demanding and yet contains appealing implications on asset pricing. The rest of this 

section focuses on reviewing representative works along this line. 

Cochrane (1996) is the first paper in the literatiu-e focusing on the pricing relationship 

between physical investment returns and equity retiuns. Specifically, Cochrane studies 

the validity of a factor pricing model. In the model, the physical investment returns are 

assumed to be the only pricing factors for the stock returns, i.e., the stochastic discoimt 

factor m is a linear combination of the physical investment retiuns only. The model 

is then estimated and tested by using the GMM procediure. Two types of physical 

investment returns are considered as factors for the stock retmns: the gross private 

domestic nonresidential and residential investment retiuris. The stock retmns studied 

iuchide the retiu-ns for 10 portfolios of NYSE stocks sorted by market \'alue. The GMM 

results suggest that the physical investment factor pricing model is rejected when only 

the excess equity returns are scaled by the selected instruments. However, the model 

can not be rejected when both the factors and the excess equity returns are scaled by 
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the selected instnunents. Cochrane also compares the performance of this factor pricing 

model with several other popular asset pricing models based on the pricing errors of the 

mean excess returns. The physical investment factor pricing model performs at least as 

well as all the other models, and performs significantly better than the CCAPM and an 

ad hoc consimiption growth factor model. 

As an important contribution to the hteratiire, Cochrane proposes an empirically 

implementable way to test whether physical investment returns contain enough infor­

mation to correctly price equity returns. The proposed factor pricing model can be 

derived either by invoking no-arbitrage assiunptions or by invoking appropriate pref­

erence assiunptions in the general eqiiilibriima framework of Brock (1982). Moreover, 

the estimation and testing of the factor model readily fits into the GMM framework 

proposed by Hansen and Singleton. 

One shortcoming of Cochrane's study is that the study does not provide any formal­

ized rule on selecting the munber and natm-e of the intertemporal production technologies 

that drive equity returns. Instead, Cochrane uses two arbitrarily selected aggregate tech­

nologies (nonresidential investment and residential investment) to construct the physical 

investment return series. Clearly, such classification is based on the usage of the final 

product rather than the characteristics of the production process. Hence, these two 

aggregated production technologies may not perform well in terms of captimng all of 

the intertemporal investment opportimities in the economy. As a matter of fact, the 

model is rejected when only the excess equity retiuns are scaled by the selected instru­

ment. Part of the reason for the rejection may be due to the insufficient spanning ability 

of the physical investment retiums constructed from the selected aggregate production 

technologies. This highfights a joint hypothesis test problem embedded in Cochrane's 

approach. Both the factor pricing model and the aggregation of production technologies 

are modeling assumptions. Once the model is rejected, it is very difficult to identify 

whether the rejection comes from the physical investment factor pricing model per se or 
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from the inappropriate aggregation of production technologies. 

Kasa (1997) compares the ability of the CCAPM and the PCAPM to explain the 

cross-coimtry and time-series variation of stock returns in the United States, Japan, the 

United Kingdom, Germany, and Canada. Following Cochrane (1996), Kasa focuses on 

the performances of two factor pricing models. For the CCAPM, the factor is defined as 

the population-weighted world consimiption growth rate. For the PCAPM, the factor 

is defined as the population-weighted world investment/capital growth rate. Here, the 

growth in each coimtry's investment-capital ratio is tised as a proxy for the stochas­

tic component of each coimtry's physical investment retiun. For asset returns, the time 

series of each coimtry's aggregate stock returns are used in the study. Both the consimip­

tion and physical investment factor pricing models are estimated and tested by means 

of the GMM procedure. The empirical results suggest that neither the PCAPM nor 

the CCAPM can be rejected by the data. However, the PCAPM performs significantly 

better than the CCAPM in explaining the cross-coimtry variation in stock returns. 

In summary, the empirical research on the PCAPM is still at an early stage of 

development. Researchers are still searching for satisfactory methods to empirically test 

the theoretical impUcations of the PCAPM. In tliis paper, I extend the research by 

Cochrane (1996) and Porter (1999) by proposing an alternative approach to identifying 

the linkage between physical investment returns and equity returns iising cross-industry 

data. Hopefully, it will provide additional insights into the theoretical implications of 

the PCAPM. 



www.manaraa.com

22 

3. THE FIRM'S OPTIMIZATION PROBLEM 

Unlike equity returns, physical investment returns do not have actual market quotes, 

and have to be derived by solving the profit maximization problem of the representative 

firm. In this chapter, I use the dynamic programming technique to solve the firm's 

intertemporal optimization problem and to derive a closed-form representation for the 

physical investment return. 

Consider a representative firm that produces a single type of output with a single 

type of capital input. The objective of the firm is to maximize the expected discoimted 

net cash flow by selecting the optimal physical capital investment plan. 

The firm solves the following optimization problem: 

OG 

max Et 

subject to 

n, = ptYt-It-A{h.Kt)-uJtLt, (3.2) 

Yt = etF{Kt,L,). (3.3) 

(3.4) 

where the t subscript denotes time, m is the equilibriimi stochastic discoimt factor, Oj 

denotes the firm's net cash flow, Ki denotes the firm's beginning physical capital stock, 

It denotes the new physical capital investment, Lt denotes labor input, Yt denotes the 

firm's output, and pt, Cf, ujt and 8 denote the output price, a random productivity shock, 

the wage rate, and the depreciation rate, respectively. The production fimction F(-) 
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is assumed to be continuously differentiable, strictly increasing, and strictly concave 

on with F(0, Lt) = 0, F'(0, Lt) = oo, and F'(oo, Lt) = 0. The technology shock 

> 0 is assiuned to be independently, identically distributed with stationary probabiUty 

distribution. The adjustment cost fimction A(-) reflects the cost of investment beyond 

the piu-chase price of capital goods. It has the properties that A{-) > 0, dAjdlt > 0, 

and dAfdKt < 0. Finally, the motion of the capital stock is given by equation (3.4). 

To solve the above problem, let us substitute equations (3.2) and (3.3) into the 

objective fimction and define 

DO 

= rnaxEt{y ] ^t+h) ~ !t+h ~ ~ 
h=Q 

=  n\a :x .p t e tF{K t ,  L t )  -  h  — A{I t ,  K t )  — u tL t  +  
OO 

El{^^^l.t+h\Pt+h^t-i-hF^^l+h-. Lt+h) — It+h ~ A^It+ht I^t+h) ~ '^t+hLi+hW • (3-5) 
h=l 

Taking derivative with respect to It gives 

OO 

0 = —1 — Ai{t) + Et{^^ Tnnt t+h[Pt+h^t+hFf({t + h) — Ah-{t + b.)]Ki{t  + /z)} (3.6) 
h=l 

Here Ai { t )  denotes the partial derivative with respect to I t ,  evaluated with respect to 

the appropriate argiunents at time t. Similar interpretation can be given to Fk'(^ + h), 

A f ^ - ( t  +  h ) .  a n d  K [ { t  +  h ) .  

The equation of the motion of capital stock in (3.4) implies that 

= (1 ~ ^)I^L+h-l + It+h-\ 

—  ( 1  ~  ̂ ) [ ( 1  ~  ̂ ) I ^ l + h - 2  +  I t + h - 2 \  +  I t + h - l  

— (1 ~ ^)~I^t+h-2 + (1 ~ ̂ )It+h-2 + It+h-l 

(3.7) 

(3.8) 
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Substituting equation (3.8) into equation (3.6) gives 

1 + ̂ i{t) = mf £+/,(! — 6)^~^\pt+h^t+hFK{t + /i) — AK{t + /i)]}. (3-9) 
h=l 

Using the fact that mt,t+h+i — ^t,t+i * (Cochrane (1996)), equation (3.9) can 

be rewritten as 

OO 

1 + A, { t )  = Et {mt , t+ i \ p t+ i e t+ iFKi t  + 1) - AK{ t  + 1)]} + Et {mt^ t+ i  ^ Tnt+i,i+h^i 
h=l  

(1 — 6)^[pt+h+i^t+h-i-iFK{t + /i 4-1) — Af^{t + h + I)]}. (3.10) 

Forwarding equation (3.9) by one period impUes 

1+^/(^+1) — ^t+i{5Z "at+i,t+h-i-i(l — ^) h-i 
/i=i 

[Pt+h+l^t+h+lFK{t + /l + 1) — Af^it + h + 1)]}- (3.11) 

Substituting equation (3.11) into equation (3.10) gives 

l + /i./(i) = £'£{mt_t+i[p£4.ie(+ii^/v:(^ + 1) — >lA:(i + 1)]}+ 

- <5)[1 + Ar{ t  + 1)]}, (3.12) 

or, equivalently, 

+ 1)] = 1, (3.13) 

where 

nirt , I \ — Pt-i-i^t+iFh-it + 1) — A /icit + 1) + (1 — 6)[1 + Ai { t  + 1)] 
^  1 +  Ad t )  

(3.14) 

Equation (3.14) can be interpreted as the firm's marginal rate of retiurn on physical 

investment. As pointed out by Cochrane (1996), "the investment retiurn is the marginal 

rate at wliich a firm can transfer resources through time by increasing investment today 

and decreasing it at a future date, leaving its production plan imchanged at all other 

dates." To invest an additional imit of capital at time t, the firm has to sell less and to 

bear a certain amoimt of adjustment cost. The denominator \+Ai{t) captures this effect. 
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The munerator in the definition of R'{t + 1) represents the marginal benefit realized at 

time ^ + 1 from the additional capital investment at time t. Tlie term et+iF[i{t + 1) is 

the extra output produced from the additioneil investment at time t, while AK{t + 1) 

is the effect of the additional capital investment on the adjustment cost at time i + 1. 

To maintain its production plan imchanged at all other dates, the firm has to lower its 

investment at time i + 1. The decrease of capital investment allows the firm to sell more 

and to reduce its adjustment cost. The term (1 — (5)[l + v4/(f+l)] captures these positive 

effects on time t + I profit. In simimary, R^{t + I) is just the ratio of marginal benefit 

at time i + 1 over marginal cost of one additional imit of capital investment at time t, 

and thus is a legitimate definition of physical investment retiurn. 

For the purpose of constructing physical investment series, I make the following 

assumptions about the production function and the adjustment cost fimction: 

The production function has the standard Cobb-Douglas form. The adjustment cost 

funcrtion adopted here is referred in the literatiure as the symmetric convex (quadratic) 

cost function. It is consistent with the basic assumption made by the literature on the q-

theor\- of investment since it is linear homogeneous of degree zero in It and Kt- Further, 

the funf:tional form (3.16) imposes symmetry aroimd ItlKt = 0. so that the adjustment 

c:ost of increasing Ki by a certain percent is equal to that of a similar-size cut in Kt-

Later on I \sill relax the assiunption of symmetry and allow for asjTnmetric adjiistment 

c:osts. The parameter 77 in equation (3.16) is called the adjustment cost coefficient. For a 

given size of new capital investment and current capital stock, a firm with higher TJ will 

inctir higher adjustment cost than a firm with lower 77. Hence, 77 measiures the relative 

cost for a firm to adjust its capital stock. If two firms engaging in the same production 

activity differ only in the level of 77, then the firm with higher 77 (higher adjustment cost) 

Y , = e , F { K t . L t )  =  e . K T L l - ' ^ .  (3.15) 

(3.16) 
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adjusts its capital stock in a more sluggish manner than the firm with lower rj (lower 

adjustment cost) in response to a productivity shock. 

Equations (3.15) and (3.16) imply that 

e t p K i t )  =  a  , (3.17) 

Ai { t )  = (3.18) 

Substituting equation (3.17), equation (3.18), and equation (3.19) into the definition of 

R' {t + 1) gives 

Equation (3.20) will be used to compute physical investment returns in the following 

empirical tests. 
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4. ESTIMATION AND TESTING METHODS 

In this chapter, I present the estimation and testing methods used to examine the 

validity of the spanning assimiption. The proposed nonparametric procedure is based on 

entropic principles and no-arbitrage constraints. For detailed illustration on the basic 

entropic principles and no-arbitrage constraints, please refer to appendices A and B. 

4.1 The Physical Investment Factor Pricing Model and the 

Most asset pricing models in the finance literature focus exclusively on the payoff 

space of financial securities. Within the context of PCAPM, one essentially expands 

the payoff space to include that of physical investment. After constnicting the physical 

investment retiu-n series according to equation (3.20), one can then examine the pricing 

relationship between physical investment retiurns and equity retiurns. 

If there are no arbitrage opportimities in the expanded payoff space including both 

the physical investment and the financial investment, then the Fimdamental Theorem of 

Asset Pricing and the Pricing Rule Representation Theorem (Dybvig and Ross (1992)) 

imply that a stochastic discoimt factor m exists such that m ^ 0 and 

Here. /?/ denotes the physical investment return on production technology i, and Rf 

Spanning Assumption 

E { m R [ )  = I, Vz, 

E { m R f )  =  1, Vj. (4.2) 

(4.1) 
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denotes the financial return on equity j. Intuitively, physical investment is just an 

alternative way of transforming goods across dates and states. Therefore, the physical 

investment returns should be priced by the same discount factor m that correctly prices 

the equity retiu^is. 

Equations (4.1) and (4.2) are empirically testable only when specific restrictions are 

imposed on m. What form m shoidd take is one of the central topics in empirical asset 

pricing. The law of one price implies that there always exists a discoimt factor m that 

is a linear combination of the physical investment retiunis and the equity returns and 

that prices both (Chamberlain and Rothschild (1983)). Mathematically, there exist 6s 

such that 

m = + (4-3) 
i J 

and that equations (4.1) and (4.2) are satisfied. However, this m may be negative, which 

implies that dominant trading strategies (and obviously arbitrage opportimities) exist 

in this economy. 

Cochrane (1996) imposes additional restrictions on equation (4.3), and proposes the 

following physical investment factor pricing model: 

m = J2biRi- (4.4) 
i  

Note that the equity retiums are completely excluded from the stochastic discount factor. 

In other words, the above factor pricing model uses only the physical investment returns 

cis factors to price equity returns. One critical assiunption justifying the existence of 

stochastic discount factor (4.4) is that financial securities offer no additional spanning 

opportiuiities on the payoff space beyond those offered by physical capital investment. 

This is just a restatement of the spanning assumption discussed in the introduction. 

One thing to point out is that the validity of (4.4) is not a direct implication from a 

pure PCAPM. A pure PCAPM imposes no restrictions on the space of equity retiurns, 

and reads any equity retiurn off a producer's first-order conditions. With general time-
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separable preferences, the stochastic discount factor impUed by a pure PCAPM is in 

general a nonhnear function of the physical investment returns. The physical investment 

factor pricing model can be derived either by imposing arbitrage assumptions or by 

imposing preference and technology assimiptions. If one assimies that the stocks traded 

in NYSE are claims to different combinations of N production technologies, then no-

arbitrage between the physical investment market and the financial market implies that 

the spanning assiunption and the physical investment factor pricing model must hold. 

Alternatively, within the context of the Brock-style general equilibrium model, sufficient 

conditions for the validity of the spanning assxmaption and the hnearity of m require 

certain restrictions on technology and preferences. In the example given by Cochrane 

(1996), the general equilibriimi PCAPM is characterized by the standard one-sector 

stochastic growth model with log utihty, Cobb-Douglas production, and full depreciation. 

In tliis special case one can show that the stochastic discount factor can be first-order 

appro.ximated by a linecu: fimction of the physical investment retiurn. 

Otu" goal is to test whether the physical investment retvuns contain sufficient in­

formation to correctly price the corresponding equity retiuns. Two approaches can be 

taken to conduct the empirical test. First, one can examine the validity of the physical 

investment factor pricing model (4.4). I refer to this approach as the linear factor pricing 

approach. Cochrane (1996) selects two aggregate production tec.hnologies to construct 

m, and examines whether such a stochastic discoimt factor is able to captiure the relative 

risk structure of equity portfolios of different market capitahzation. Kasa (1997) follows 

a similar approach to examining the performance of the physical investment factor pric­

ing model in explaining the international variations in equity retiuns. The linear factor 

pricing approach offers a tractable way to empirically test the PCAPM since it readily 

fits into the GMM firamework. However, such an approach has an undesirable property 

that the stochastic discoimt factor may take on negative values, which is inconsistent 

with the spirit of no-arbitrage. The second approach involves directly testing the validity 
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of the spanning assiunption. Instead of assuming a parametric form for the stochastic 

discoimt factor, the proposed testing procedure fociises on recovering and compsiring the 

state price densities for the physical investment returns and the equity returns. Hence, 

I refer to this approach as the state price density approach. In the following sections, 

I focus on disciissing the testing procedure, data construction, empirical results, and 

the relationship between the state price density approach and the Unear factor pricing 

approach. 

4.2 Procedures for Testing the Validity of the Spanning 

In this section, I present a three-step procedure for testing the spanning assimiption 

bcvsed on entropic principles and no-arbitrage constraints. 

Let R be the gross rate of return for any asset. Then the no-arbitrage constraint 

implies that there exists m 0 such that 

Dividing both sides by E{m) and assuming the existence of a risk free rate r, we can 

rewrite equation (4.5) as 

where d~ denotes the actual probability measure over the states of the world. Utilizing 

the change of measure 

Assumption 

E [m/?] = 1. (4.5) 

(4.6) 

d-Tim — , . dn , 
E[m\ 

(4.7) 

wc can express equation (4.6) in the following equivalent form: 

[-i?l = 1. 
r 

(4.8) 
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Equation (4.8) is the risk-neutral representation of the no-arbitrage constraint, in which 

d-Hrn is referred to as the risk-neutral probability measure, and d-K^nldK is called the 

state price probability density (SPD). Note that, unless the market is complete, the 

risk-neutral probability (or the SPD) will not be imique. 

Assuming that no arbitrage opportimities exist separately in either the physical 

investment market or the stock market, eq\iation (4.8) implies the following two no-

arbitrage constraints (one for each market): 

Here d/?/ and d~E denote the risk-neutral probability measm-es for the physical invest­

ment market and the stock market respectively, /?/ denotes the one-period gross return 

of investing one dollar capital in production technology z, and Rf denotes the one-period 

gross return of investing one dollar in equity or portfolio j in the stock market. 

The spanning assumption states that the payoff space of physical capital investment 

spans that of financial investment in the stock market. No-arbitrage constraints alone 

ensiure that the two markets share at least one risk-neutral probabihty measure. If, 

in addition, the spanning assimaption holds, then any risk-neutral probability measure 

correctly pricing the physical investment retiuris should also be able to price the eq­

uity retiu-ns. Based on the above implication, one natiural way to test the spanning 

assiunption is to examine whether the risk-neutral probability measiu-e recovered from 

the physical investment returns is consistent with that recovered from the equity returns. 

Since 

it will suffice for us to recover and compare the SPDs in the two markets. 

Clearly, how to recover and compare the SPDs (or risk-neutral probability measures) 

is crucial in conducting the empirical test. Fortimately, the entropic framework provides 

[infl = I, 
Lr 

E'. = 1-
.r •' . 

i = 1.2. ...,M. 

J = 1,2,..., AT. (4.10) 

(4.9) 

(4.11) 
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handy ways to complete this task, hi simimary, the proposed testing procedure consists 

of the following three steps. Step 1 recovers the SPD from the physical investment return 

data. Step 2 uses the recovered SPD from step 1 as prior information, and recovers the 

SPD for the equity returns. Finally, step 3 compares the entropic distance between these 

two sets of SPDs. Under the spanning assumption, the entropic distance should equal 

zero. 

For the remaining of this section, I will provide a detailed description on how to 

implement the above three steps. 

4.2.1 Recovering the State Price Probability Density from the Physical In­

vestment Return Data 

To find the SPD correctly pricing the physical investment returns, I follow the canon­

ical evaluation method proposed by Stutzer (1995). Let R{ = R[/T be the discoimted 

physical investment retium on production technology i and M be the total nmnber of 

different technologies in the economy. Then the SPD for physical investment returns 

c an be recovered by solving the following optimization problem: 

rnin/(7r/,7r) = f log(^)d7r/ (4.12) 
J air 

subject to 

E^, = 1, 2 = 1,2,..., A'/. (4.13) 

J dTTr = 1. (4.14) 

hi information theory, I{~I,TZ) is referred to as the Kullback-Leibler Information Crite­

rion (KLIC). It is well kno^^^l that /(tt/ 0 with equality only when d—i = d~. 

The above procedure is well justified by Bayesian, information-theoretic economet­

rics. Before observing any return data, if one is reluctant to impose any arbitrary process 
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iissiimption, then it is reasonable to just assume that the iinknown risk-neutral proba­

bility measure diti is the same as the actual probability measure dTv. After collecting the 

retiurn data and constructing the no-arbitrage constraints, one can then use the addi­

tional information to update this prior belief, and to formulate a posterior risk-neutral 

probability measiure. It is reasonable to require that the posterior probability measiure 

incorporate no additional information other than that contained in the no-arbitrage 

constraints. 

To formalize the above concept in a mathematical framework, we need to construct 

a well rationalized criterion quantifying the amoimt of information gained in changing 

from the actual probability measure dir to the risk-neutral measiu-e divi. The axiomatic 

rationalization for using the KLIC to measure the information gain w^as provided by 

Khinchin (1957) and Hobson (1971). Khinchin (1957) considers a special case of the 

KLIC when dir is a discrete uniform distribution. In this case, the minimization of I is 

equivalent to the maximization of the Shannon entropy — Us 7r/(s) log(7r/(s)), where 5 

represents the state of the world. In an information theoretic context, Shaimon entropy 

is used to measiure the amoimt of imcertainty embodied in a probability distribution. 

Khinchin then formulates intuitively appealing axioms that a measure of information 

uncertainty should satisfy, and shows that the Shannon entropy is the unique measiure 

satisfying the axioms. 

Hobson (1971) generalizes Khinchin's uniqueness theorem and considers the general 

c iise that the actual probability measme is not imiformly distributed. For any arbitrary 

c/tt, the measure of information gain from d-K to d~[ should satisfy the following axioms: 

1. Any information gain fimction should be a continuous fimction of its argument, so 

that the information changes only a small amount when the probabilities change 

by a small amoimt. 

2. A mere relabeling of the states (i.e., which of the possible returns is dubbed the 
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first possible return, the second possible return, etc.) should not change the value 

of/. 

3. No information is gained unless there is a change of probability measiure, i.e., 

/(tt, TT) = 0. 

4. Suppose that CLTT is luiiformly distributed on a subset of m outcomes (zero else­

where), and d~i is also imiformly distributed, but on only n of those outcomes, 

n < m. Then / should be increasing in m, because more information is gained 

when d~[ ndes out more of the outcomes possible imder d-ir. Fiurthermore, it is 

recjuired that I should be decreasing in n, as less information is gained when dTTf 

is more diffuse. 

5. Any information gain fimction should satisfy a "composition rule". The details of 

the rule is omitted here. Interesting readers should refer to Hobson(1971). 

Hobson then shows that the only fimctions satisfying the above axioms are propor­

tional to the KLIC defined in equation (4.12). 

It is well-known that the solution to problem (4.12) is attained by the following 

strictly positive, generalized exponential density, usually called a Gibbs density (see 

Appendix A for proof): 

r [ 

(4.15) 

where the parameter vector A can be found by solving the following convex minimization 

problem: 

= art; minf2(A^), (4-16) 

where 

n(A') = £,{expEA,'(fl.' - 1)|}. (4.17) 
t = l  
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Substituting equation (4.15) into the objective function gives us the minimized KLIC 

criterion: 

/(7r;,7r) = -logn(A'). (4.18) 

Given a time series of physical investment returns, we may estimate the solution to 

(4.16) by substituting a time average for the expectation operator. Such a substitution 

(•an be justified by the Law of Large Nimibers since the expectation is taken with respect 

to the actual probability distribution over the states of the world. Thus, 

A = arg minn(A^). (4-19) 
A' 

where 

«(A')sif;expEA!(fl;,-i)|. (4.20) 
£=1 1=1 

Substituting A into equation (4.15) gives us the estimated SPD d-fr] fd~ for the physical 

investment retiuns with 

d w  E . l e x p { Z f l i ^ { I i l - m '  

Note that the specific form of the estimated risk-neutral measiure d-k} for physical 

investment retiunis depends on oiu: assumption about the actual probability distribution 

d—. In many applications, one may need to exphcitly define d~. One frequently made 

iissumption is that d~ is uniformly distributed. As we shall see in step 2, siich an 

assumption about the actual probabiUty distribution over the states of the world is not 

necessary for the purpose of testing the sparming assiunption. It wiU suffice to proceed 

with tlie estimated SPD dic'iJdTr. In other words, the proposed testing procedure is not 

sensitive to different specifications about the actual probability measiu-e. 
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4.2.2 Recovering the State Price Density for Elquity Returns Using dfr^/dTr 

as Prior Information 

Let R f  =  R f  / r  be the discounted gross rate of return for equity or portfoUo j .  

Assume that there are a total of N equities or portfolios in the stock market. Using 

d-kj/d— as the prior information, we can recover the SPD for equity retiims by solving 

the following optimization problem: 

. d - K f  
mm te in/(7r£:,^;) = f log(-^)rf7r£; (4.22) 

E J DTTJ 

subject to 

E^,[Rf\ = 1, J = 1,2,..., AT, (4.23) 

j d-KE = 1. (4.24) 

The Bayesian interpretation of the KLIC /(Tr^,^^) is similar to that of /(tt/./t) in 

step 1. Before gathering any equity return data, one may believe that the equity mar­

ket and the physical investment market share the same risk-neiitral probability measure 

(or SPD). After observing the equity returns and constructing the no-arbitrage con­

straints, one can then update her prior behef and formulate a posterior risk-neutral 

probability measure for the equity retiurns. By minimizing the KLIC /(~E;^/) subject 

to no-arbitrage constraints, one makes sure that the updating process incorporates no 

additional information other than that contained in the no-arbitrage constraints. 

The solution to the above problem is the following Gibbs density: 

dTT'E  ̂ exp[Ej^i Af (^f - 1)] dT^'f 

dTT {expX^L, Xf{Rf - 1)]} ciTT 
(4.25) 

- E 
where the parameter vector A is determined by 

A = ar^minf2(A^). (4.26) 
A^ 
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where 

n(A^) s E,. {expE Xfiiif - 1)]}. (4.27) 
j=i 

Since the expectation in equation (4.27) is taken with respect to the risk-neutral prob­

ability measure TTJ, the sample time average is no longer the consistent estimator. To 
- E 

empirically estimate A I perform the following change of measure: 

= E^;{exp[f;Af(^f-l)]} 
j=i 
iV _ 

= £:„{exp[£ (4.28) 
j=i 

Substituting the estimated SPD for physical investment returns into the above equation 

,t; ' ' £.{expEi;i, A,'(fl,'-!)]}' 

g,(expE7., - ') + S"i - 1)]} 29) 

£,{etpE?I,Af(fl/-l)l} 

Since all the expectations in equation (4.29) are taken with respect to the actual prob-

ability measure, we can consistently estimate A by substituting time averages for the 

expectation operators. Hence, 

A^ = ar^ mlnQ(A^), (4.30) 

where 

= exp[E-. A/(^, - 1)] 

For notation purposes, define 

Then equation (4.30) can be rewritten as 

A^ = arg min ̂ QT{R, A^). (4.33) 
A^ ^ 
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^ £ 
Substituting the estimated A into equation (4.25) gives us the estimated SPD d-k'^ldir 

for the equity returns with 

dTT'ir exp[EjLi Af (fif - 1)] d^'f 

dn E-. {exp[E7=i Af (^f - 1)]} • 
(4.34) 

4.2.3 Testing the Null Hypothesis that the Two State Price Densities Are 

Identical 

If the spanning assiunption holds, then any risk-neutral probability measure correctly 

pricing physical investment returns should also be able to price the corresponding equity 

returns. In other words, the two SPDs recovered in step I and step 2 should not be 

significantly different from each other. Note from equation (4.25) that 

^ = (4.35) 
CtTT uTT 

Therefore, the null hypothesis for testing the equivalence between the two SPDs can be 

stated as 

/fo:Af = 0, J = l,2,...,iV. (4.36) 

To carry out the above hypothesis test, we need first to study the asymptotic prop-

• - JET £7 
erties of A , the sample estimate for A . Note that the estimator A is an extremiun 

estimator. Theorems 4.1.2 and 4.1.3 in Amemiya (1985, pp. 110-111) characterize regu­

larity conditions for an extremimi estimator to be consistent and asymptotically normally 

distributed. Stutzer (1995, pp. 381) discusses reasonable assimiptions under which the 

" E 
regularity conditions hold in oiu: context. Under these regidarity conditions, A is a 

- £ 
consistent estimator for A , and has the following asymptotic normal distribution: 

V f { \  - A ) —. N 

where 

(4.37) 

H{X^) = lim;^Ef • (4.38) 
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B(X') ^ (4.39) 

zE 
Here, the subscript A indicates that both H { - )  and B(-) are evaluated at the true 

- E 
parameter value A . The above asymptotic normality and the nidi hypothesis imply 

that 

TA^' A^ ̂  X % .  (4.40) 

^ - E ^ E 
Here, H T and B r  are consistent estimators for H { \  )  and B{\ ) respectively. In 

particular, HT can be calculated by evaluating the Hessian matrix of T~^QT{R.X^) at 
^ E 
A , and Br is just the covariance matrix of the gradient of 

expE;^, -1)1 

T-'5;r=iexpEJi,A/(^,-i)) 
(4.41) 

- E 
evaluated at A . The chi-square statistic in equation (4.40) will be computed for testing 

the null hypothesis that the two SPDs are identical. 

It is obvious that, with appropriate modifications, the above procediure can also be 

used to test the hypothesis that the risk-neutral measiure d/ri for physical investment 

retiurns is identical to the actual probability measiure diz over the states of the world. 

From equation (4.15), we know that 

diz'i = d~ A =0. (4-42) 

To test the hj.-pothesis that all the A'^s are equal to zero, we can apply a similar chi-square 

- £r - / 
statistic as defined in (4.40) by replacing A with A and by using appropriate Hr and 

Br- In particular, Hr shoidd be calculated by evaluating the Hessian matrix of 

at A , and Br should be the covariance matrix of the gradient of exp[X)i=i ~ 1)] 

evaluated at A^. 
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5. DATA 

I iise the procedure proposed in chapter 4 to test the vahdity of the spanning as­

sumption for the following sLx two-digit industries: mining, construction, manufacturing, 

transportation, commimication, and utilities. Since the maniifactiuring industry may in­

clude subindustries with very different production characteristics, I fiu-ther divide the 

manufactiuring industry into two subgroups; more capital intensive manufactiuing in­

dustry and less capital intensive manufactiuring industry. Each industry is allowed to use 

a different production technology. The annual physical investment retiuns from 1949 to 

1997 are constructed using equation (3.20). In the stock market, I formulate six industry 

portfolios, one for each industry Usted above. The aimual equity retiurns for the same 

time period are constructed as retiuns on investing in each industry portfolio. The re­

maining of this chapter provides a detailed description on the data sources, the criterion 

used to divide the manufacturing industry into two subgroups, and the formation of 

both physical investment returns and equity returns. 

5.1 Data Sources 

The annual physical capital investment data is provided by the Biu-eau of Elconomic 

Analysis (BEA) at the U.S. Department of Commerce. The BEA's primary data source 

is the annual plant and equipment survey, which provides investment data for non­

residential investment by establishments engaged in non-farm industries. This data is 

supplemented by the quinquennial economic census and industry-specific data sources. 
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The BEA makes adjustments to the investment series iising its judgment about the rela­

tive quality of relevant data sources so that the total annual investment across industries 

siuns to the private investment in the National Income and Product Accoimts. The BEA 

also provides the annual gross products and the year-end estimates of the capital stock 

at the industry level. All the nominal dollar values are deflated by the Producer Price 

Index of capital equipment provided by the Citibcise. 

The monthly returns on industry equity portfolios are downloaded from the NYSE, 

AMEX, and NASDAQ retmn files maintained by the Center for Research in Security 

Prices (CRSP). Risk free rates are from the Fama/BUss Risk Free Rates File main­

tained by CRSP. Nominal returns are deflated using the Producer Price Index data 

from Citibase. 

5.2 Classification of the Manufacturing Industry into Two 

Subgroups 

The manufacturing industry- consists of a wide range of industries with diflferent pro­

duction characteristics. According to the 1972-SIC basis, the 19 industries classified 

into the manufacturing family are broadly divided into two groups: industries produc­

ing durable goods and industries producing nondiurable goods. Such classification is 

based on the different characteristics of final products rather than production technolo­

gies. Recall from chapter 3 that, consistent with Cobb-Douglas production fimctions, 

the technological difference across industries is characterized by the capital/labor ratio, 

i.e., the capital intensity. Since the reported capital stock series for each industry is not 

v^ery reliable when compared with the investment series, I use the capital investment 

per worker as a proxy to capital intensity. Using the investment data from BEA and 

the number of employed persons reported in Employment and Earnings, I compute the 

c;apital investment per worker for each industry for the year 1997. Industries with invest­
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ment per worker above (below) the median is classified as more (less) capital intensive 

manufacturing industry. The more capital intensive manufacturing industry(manfctl) 

includes rubber and miscellaneous plastics products, primary metal industries, stone, 

clay, and glass products, instnmients and related products, electric and electronic equip­

ment, tobacco products, paper and aUied products, and petroleiun and coal products. 

The less capital intensive manufacturing industry{maxiict2) includes apparel and other 

textile products, leather and leather products, fiumiture and fixtiures, printing and pub­

lishing, hunber and wood products, textile mill products, machinery, fabricated metal 

products, transportation equipment, and food and kindred products. 

5.3 Formation of Equity Portfolio Returns 

For each industry, I form value-weighted industry portfoUos using all firms listed on 

NYSE, .'VMEX, and NASDAQ. The return files maintained by CRSP contain monthly 

retiurn series for each industry portfolio. 

One natiural way to constnict aimual equity returns is to multiply the relevant 

monthly retiuns. However, this approach is not quite appropriate due to the differ­

ent reporting frequencies for equity retiurn data and physical capital investment data. 

Equity retiurn is reported at high frequency, and is the instantaneous end of period value. 

However, physical investment data are reported, at best, as a quarterly average. The 

industry-level physical investment data are available only on an annual basis. Unlike 

equity returns, physical investment data are reported as the siun of capital investment 

e.xpenditures over the period rather than the instantaneous end of period value. In other 

words, physical investment data are temporally aggregated. As pointed out by Porter 

(1999), such temporal aggregation induces (a) the reduction of the measured correlation 

between equity returns and physical investment returns, (b) a positive correlation be­

tween investment growth cind equity returns lagged one period, and (c) a positive serial 
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Table 5.1 Summary Statistics 

Industry Parameters Investment Return Elqnity Return 
Q 1 8 Mean Std. Dev. Mean Std. Dev. 

Mining 0.76 8.10 0.10 8.98 % 9.97 % 8.98 % 17.12 % 
Const rn. 0.13 6.73 0.10 9.34 % 9.92 % 9.34 % 21.24 % 
Manfct. 0.23 6.36 0.10 10.71 % 7.51 % 10.71 % 15.24 % 
Manfctl. 0.20 7.26 0.10 10.55 % 7.67 % 10.55 % 16.18 % 
Manfct2. 0.09 4.51 0.10 10.94 % 7.86 % 10.94 % 15.26 % 
Transp. 0.76 18.03 0.10 8.78 % 10.08 % 8.78 % 18.15 % 
Commiin 0.86 10.79 0.10 9.11 % 7.55 % 9.11 % 14.03 % 
Utility 0.83 5.27 0.10 8.75 % 4.93 % 8.75 % 13.32 % 

dependence in the first differences of physical investment returns. Porter (1999) com­

pares several alternative methods for correcting temporal aggregation biases, and shows 

that using equity retiums calculated fi-om time averaged prices reduces the problems 

described above. 

Following Porter (1999), I calculate armual returns on industry equitv- portfohos as 

follows: 

+ = j = (5.1) 
2^71=1 t,n 

where t represents year, n represents month, j represents industry portfolio, and 

represents the equity price of portfoho j at month n in year t. Equity prices are con­

structed in an artificial way using the value-weighted industry portfolio retiuns including 

dividends. Clearly, equation (5.1) calculates the annual equity retiurns as the ratio of 

the average monthly price in year < -f 1 over the average monthly price in year t. 

Table 5.1 reports the mean and standard deviation of the estimated equity retiums 

for each industry portfolio. The correlation matrix for all industry portfolios can be 

found in table 5.2. 
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Table 5.2 Correlation Matrix for Equity Returns 

Mining Constm. Manufact. Transp. Commim. Utility 
Mining 1.00 
Constrn. 0.72 1.00 
Manufact. 0.58 0.67 1.00 
Transp. 0.53 0.62 0.83 1.00 
Commim. 0.10 0.35 0.62 0.63 1.00 
Utility 0.20 0-49 0.71 0.64 0.82 1.00 

5.4 Estimation of Industry Physical Investment Returns 

For each industry, I estimate the physical investment retvums in three steps. First, I 

take the annual capital investment and gross product data for all of the six industries 

from BEA. Second, I arbitrarily set the depreciation rate 6 = 0.10, and construct time 

series of capital stock for each industry using the procediure stated below. Finally, I 

estimate the Cobb-Douglas coeflBcient q and the adjustment cost parameter 77 for each 

industry, and then use equation (3.20) to compute the estimated physical investment 

returns. 

To constnict the capital stock series, I start from equation (3.4), which characterizes 

the motion of the capital stock. Setting the value of capital stock at the beginning of 

1948 equal to the reported value from BEA, I then construct the time series of capital 

stock for each industry according to equation (3.4) using the constant depreciation rate 

and the reported capital investment series from BEA. 

Given the depreciation rate 6 and the investment/capital ratios, the remaining two 

parameters to be determined are the Cobb-Douglas coefficient a and the adjustment 

cost parameter r/. From equation (3.20) we know that o: affects the mean of the physical 

investment retiun and TJ affects both the mean and the standard deviation. However, 

neither parameter has much impact on the correlation of the physical investment return 

with investment/capital ratios and with other variables. Following Cochrane (1991), I 
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choose a and 77 so that (a) the mean of physical investment retmns is equal to the mean 

of equity returns and (b) the standard deviation of the fitted values of a regression of the 

physical investment returns on two leads and lags of the investment/capital ratio is equal 

to the standard deviation of the fitted value of the same regression for the equity returns. 

This choice of the standard deviation is designed to produce a physical investment retium 

series of about the same standard deviation as the physical investment retium component 

of equity returns. Since most of the empirical results are driven by the correlation of 

physical investment and equity returns, this scaling is not crucial to the results. Cochrane 

(1991) and Porter (1999) also point out that the correlation between equity retiuTis and 

physical investment returns is mostly driven by the investment/capital ratio, and is not 

sensitive to the changes in parameter values. 

With all the relevant information, I finally estimate the physical investment retiuns 

using equation (3.20). Table 5.1 reports the estimated parameter values and the mean 

and standard deviation of the estimated investment retiunis. The correlation matrix of 

physical investment returns for all industries is reported in table 5.3. 

Table 5.3 Correlation Matrix for Physical Investment Retiuns 

Mining Constrn. Manufact. Transp. Commim. Utility 
Mining 1.00 
Constrn. -0.06 1.00 
Manufact. 0.30 0.24 1.00 
Transp. -0.08 0.59 0.32 1.00 
Commun. 0.06 0.38 0.52 0.41 1.00 
Utility -0.20 0.40 0.13 0.46 0.28 1.00 
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6. EMPIRICAL RESULTS AND ROBUSTNESS CHECK 

6.1 Empirical Results 

With the constructed series for physical investment returns and equity retiuns, I aj>-

ply the procediure proposed in chapter 4 to test whether the SPD recovered from physical 

investment retiuns can be iised to price equity retiuns for the industries studied. The 

empirical results are reported in table 6.1. All panels of the table report the estimated 

- / - E 
values for the imknown parameters A and A , the standard errors for the estimates, and 

the chi-square statistics for testing the null hypothesis (4.36) and (4.42). The estimated 

parameter vector A identifies the state price probabihty density for physical investment 

returns, and is the niunerical solution to the optimization problem (4.19). The estimated 

parameter vector A identifies the state price probability density for equity retiuns, and 

is the numerical solution to the optimization problem (4.33). In both cases, the Quasi-

Newton Method is used to find the numerical solutions. Standard errors for estimated 

Lagrange multipliers are reported in the parenthesis. Chi-square statistics reported in 

the last column are derived from (4.40). They are used to test the hypothesis that the 

risk-neutral probability measure pricing physical investment retiuns is identical to the 

actual probability measure, and the hypothesis that both physical investment market 

and financial market share the same risk-neutral probability measiu^e. 

Similar to all optimization problems, the Lagrange multipliers reflect the change in 

the value of the objective fimction as a result of a marginal cliange in the constraint set. 

In other words, the Lagrange multipliers are just the partial derivatives of the objective 
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Table 6.1 Parameter Estimates and Testing Statistics (I) 

Ivlining Constm Manfct Ttausp Commim Utility 
Panel 1: including all six industries 

A^ -2.47 0.84 -6.94 2.52 3.10 -22.53 25.76 
(2.22) (2.92) (4.03) (2.61) (3.81) (5.63) 

A^ 1.75 -1.82 -6.73 5.03 -5.70 6.45 10.85 
(2.01) (1.80) (3.12) (2.26) (3.07) (3.25) 

Panel 2: excluding the maniifactiuring industry 

A^ -4.46 -0.76 2.45 0.05 -22.71 25.21 
(1.98) (2.71) (2.62) (2.93) (5.34) 

A^ -0.37 -1.36 2.45 -6.73 3.86 6.42 
(1.80) (1.74) (1.78) (3.02) (3.13) 

Panel 3: excluding the utility industry 

A^ -0.70 -0.97 -8.14 0.50 -0.42 14.93 
(1.91) (2.46) (3.25) (2.25) (3.34) 

A^ 1.04 -0.94 -4.23 3.95 -2.40 8.08 
(1.77) (1.35) (2.53) (2.05) (1.97) 
Panel 4: excluding both the manufacturing and the utility industries 

A' -2.91 -2.04 -0.51 -4.11 11.74 
(1.80) (2.29) (2.22) (2.61) 

A^ 0.07 -1.20 1.83 -3.08 4.94 
(1.64) (1.26) (1.60) (1.81) 

function with respect to the constraints, and in this case are just marginal entropies. 

However, in the entropic framework, the Lagrange midtipliers have more meaningfid 

economic-statistical interpretation which can be simunarized as follows: The As reflect 

the "relative contribution" of each data point-constraint to the optimal objective value. 

Consequently, the As reflect the information content of each constraint. According to 

the above interpretation, the magnitude of the estimated values of indicates the 

contribution of each industry's return series in identi^-ing the SPD (or risk-neutral 

probability measure). Industries with the largest absolute values of A^s accoimt for most 

of the deviation between the risk-neutral probability- measiure and the actual probability 
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measure. The opposite interpretation can be applied to industries with A^s close to 

zero . Similarly, industries with the largest absolute values of A^s accoimt for most of 

the deviation between the risk-neutral probability measiure in the physical investment 

market and that in the stock market. VVhen the spanning assmnption holds, all of the 

A^s should equal to zero. 

Panel 1 of table 6.1 presents the results when all six industries are included in the 

empirical testing. The utiUty industry and the manufactiuring industry contribute most 

to identifying the SPD in the physical investment market with A^^,; = —22.53 and 

^!nan — —6-94. The t-statistic for indicates that the Lagrange multiplier for the 

utility industry is significantly different from zero. According to the above interpreta­

tion, we conclude that the utiHty industry is the driving force for the deviation of the 

risk-neutral probability measiure in the physical investment market from the actual prob­

ability measiure. Furthermore, the chi-square statistic for testing the joint hypothesis 

that all of the Lagrange multipliers are equal to zero yields a value of 25.76. Since the 

chi-square statistic is significantly higher than the 5% critical value, I reject the null 

hypothesis that the risk-neutral probabihty measiure is equal to the actual probability 

measure in the physical investment market. 

The last two rows of panel 1 report the parameter estimates and testing statistics 

for the equity market using the SPD recovered from the physical investment market 

as the prior. The Lagrange multipliers A^^„ = —6.73, A^„„ = 5.03, and A^^,; = 6.45 

are significantly different from zero at the 5 percent significance level, indicating that 

the manufacturing, the transportation, and the utihty industries contribute most to 

the deviation of the risk-neutral probabihty measure in the equity market from that 

recovered from the physical investment returns. However, the chi-square statistic testing 

the joint hypothesis that all of the Lagrange multipUers are equal to zero yields a value 

of 10.85, which is less than the 5% critical value. Hence, I can not reject the hypothesis 

that the risk-neutral measure in the equity market is identical to that in the physical 
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investment, market. In other words, this provides supporting evidence that the payoff 

space of physical investment returns spans that of equity retiuns. Therefore, when all six 

industries are included, the physical investment returns contain sufficient information to 

correctly price the corresponding equity retiuns. 

To examine whether the empirical results are sensitive to the industries included 

in the study, I apply the same procedure to ceises in which one or two industries are 

excluded from the estimation and testing. Panels 2 and 3 report parzmaeter estimates 

and testing statistics when either the manufactiu-ing industry or the iitility industry is 

e.xc luded. while panel 4 presents the results when both the maniifactiu-ing and the utility 

industry are excluded from estimation. 

As sho\vn in panel 2, the utiUty industry is again the driving force for identifying 

the SPD in the physical investment market with = —22.71 and a highly significant 

t-statistic. The estimated Lagrange multiplier for the mining industry = —4.46) 

is also significantly different from zero. The chi-square statistic for testing the joint hy­

pothesis that all the Lagrange multipUers are equal to zero takes a value of 25.21, leading 

to the rejection that the risk-neutral measiure recovered from the physical investment 

returns is identical to the actual probabihty measure. Using the SPD for the physical in­

vestment market as the prior, I further estimate the corresponding SPD embedded in the 

equity portfolio retiuns. The results show that the communication industry contributes 

most to the deviation of risk-neutral measures between physical investment retm-ns and 

equity returns. The estimated Lagrange midtipUer for the commimication industry is 

-6.73. and is significantly different from zero. The chi-square statistic testing the hy­

pothesis that both the physical investment retiuns and the equity returns share the same 

risk-neutral measure yields a value of 6.42, which is lower than the 5% critical value with 

5 degrees of freedom. Again, the empirical test without the manufacturing industry can 

not reject the hypothesis that the payoff space of physical investment returns spans that 

of equity returns. 
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Panel 3 reports the estimation results when the utihty industry is excluded from the 

study. Similar to the previous results, the risk-neutral probability measiure recovered 

from the physical investment returns is significantly different from the actual probability 

measiure (chi-square statistic= 14.93). The estimation results using the equity retiums 

(see the last two rows of panel 3) suggest that the SPD for the physical investment can 

be used to correctly price the equity returns. None of estimated Lagrange multipliers is 

significantly different from zero. The joint significance test yields a chi-square statistic 

of 8.08. smellier than the 5% critical value with 5 degrees of freedom. Hence, when the 

utility industry is excluded, we still can not reject the spanning assiunption. 

Panel 4 recovers and compares the SPDs using only foiur industries: mining, construc­

tion, transportation, and commimication. The results indicate that the commiuiication 

industry contributes the most to the deviation between the two risk-neutral measiures. 

The estimated Lagrange multiplier is -3.08, but is not significant at the 5% level. Fur­

ther. the chi-square statistic from the joint significance test only takes a value of 4.94, far 

below the critical value with four degrees of freedom. Again. I find supporting evidence 

that the payoff space of the physical investment spans that of financial securities. 

Finally, I address the concern that the manufactiu-ing industry may include subindiis-

tries with very different production characteristics. Thus, it may not be appropriate to 

group them together and use one set of coefficients (q, 6, and -q) to represent their pro­

duction tec:hnologies. For the 19 two-digit industries grouped into the manufacturing 

family, I further divide them into two subgroups: more capital intensive manufacturing 

industry (manfctl) and less capital intensive manufacturing industry (manfct2). Ta­

ble 6.2 presents the estimation results when the finer industry chissification described 

above is used. Among the seven industries included in the study, the manfct2 and 

the utility industries are the most important factors "driving" the risk-neutral measiure 

for the physical investment away from the actual probabihty measure. The estimated 

Lagrange multipliers for these two industries are = —14.21 and = —26.56, 
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Table 6.2 Parameter Estimates and Testing Statistics (II) 

Mining Constm Manfctl Manfct2 Transp Commim UtiUty X ( T )  

X' -3.69 -1.56 9.10 -14.21 3.91 2.20 -26.56 27.54 
(2.38) (3.39) (5.37) (5.21) (2.83) (4.28) (6.38) 

2.60 -2.60 0.82 -7.17 3.79 -5.76 6.98 12.89 
(2.21) (1.99) (5.33) (3.72) (2.62) (3.47) (3.29) 

respectively. Both of them are significantly different from zero. The large chi-sqiiare 

statistic (27.54) measuring the distance between the two probability measures indicates 

that the risk-neutral measiure recovered from the physical investment returns is signif­

icantly different from the actual probability measure characterizing the states of the 

world. 

As before, the last two rows of the table present the estimated Lagrange multipUers 

identifying the SPD for the equity market. Clearly, the set of estimates as a whole is not 

significantly different from zero. The joint significance test yields a chi-square statistic 

of 12.89, which is below the 5% critical value with 7 degrees of freedom. Hence, again, 1 

find supporting evidence that the payoff space of the physical investment spans that of 

financial seciurities. 

In summary, I apply the proposed method to test the spanning assimiption using 

retiu-n series from mining, constniction, manufacturing, commimication, transportation, 

and public utility industries. Empirical results show that the physical investment returns 

are closely related to the equity returns at the cross-industry level in the sense that the 

SPD (risk-neutral measiu-e) recovered from the physical investment retiuris is able to 

corrcctly (in a statistical sense) price the equity returns. This indicates that physical 

capital investment conveys crucial, if not exclusive, information on financial asset pricing. 

The intuition behind this result is as follows. The fimdamental soiurce of imcertainty 

in the stock market is the business cycle induced by the real macroeconomic risks. 
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Facing a productivity shock, firms are forced to alter their intertemporal production 

and capital investment plans accordingly. Moreover, firms with different production 

technologies will react qiiite differently in response to the same economy wide shock. 

Such heterogeneous reaction to macroeconomic risks is the fundamental reason for both 

the time-series and cross-sectional variations in physical investment returns. If we view 

the financial securities traded on NYSE cis claims to different combinations of all the 

production technologies in the economy, then we should expect that the variations in 

both physical investment returns and equity returns are driven by the same set of real 

factors. Hence, we should be able to infer all the information necessary for pricing 

financial assets from firms' physical capital investment decisions. 

One inmiediate impUcation of the above results is that any asset pricing model should 

at least captiu-e the pricing information embedded in physical capital investment in order 

to generate successful empirical residts. The model should either expUcitly incorporate 

the presence of macroeconomic risks affecting firms' physical investment decisions or use 

appropriate proxies to captiure such effect. This may provide an alternative explanation 

for the disappointing empirical performance of the CAPM and the CCAPM. In the 

tradition CAPM, market retiun is used as the only factor explaining the variations in 

equity returns. Its empirical faihure may be due to the fact that market return alone 

is not able to capt\ire all the important intertemporal investment opportiuiities in the 

economy. The CCAPM attempts to infer the effects of macroeconomic risks on equity 

returns through the changes in consiunption decisions. However, empirical studies have 

showTi that consiunption change is a bad proxy for the effects of macroeconomic risks 

since nondurable consiunption growth barely moves over the business cycle. 

.A.nother implication of the empirical results is related to the importance of develop­

ing asset pricing models that incorporate key production characteristics. The finance 

literature has been dominated by asset pricing models focusing exclusively on the fi­

nancial sector of the economy. These models attempt to explain the expected retiun 
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of a particular financial asset by its covariance with other assets' returns. Numerous 

empirical works in this area have not generated satisfactory empirical results. On the 

other hand, relatively Uttle effort has been made to expUcitly model the pricing impacts 

of key production characteristics, e.g., the cost of adjusting capital stock. As mentioned 

before, the fimdamental soiu^ce of imcertainty in the stock market is the business cy­

cle induced by the raacroeconomic risks. Moreover, the reaction of the firm's physical 

capital investment decision in response to macroeconomic risks is determined by its pro­

duction characteristics. Since empirical resiilts show that physical capital investment 

conveys crucial information necessary for pricing financial seciuities, key production 

characteristics must have a nontrivial impact on financial asset pricing. I believe that 

models explicitly incorporating key production characteristics will generate much richer 

testable implications than models focusing exclusively on the financial market. 

6.2 Robustness Check 

In this section, I perform robustness check on the empirical results derived in the last 

section. In particular, I examine whether the results are sensitive to reasonable changes 

of parameter values (a, r] and «5) and of the ftmctional form of adjustment costs. 

6.2.1 Other Specifications of Parameter Values 

To check the robustness of specification with respect to production parameters a, 

T] and 6, I change the parameter values within reasonable ranges aromid the estimates 

reported in table 5.1. As before, I assume that all six industries have the same deprecia­

tion rate. For each value of 6 from 0.06 to 0.18 (with an increment of 0.03 each time), I 

estimate a and rj for each industry- to equate the mean physical investment retiurn to the 

mean eciuity return and to equate the standard deviation of the fitted values of a regres­

sion of the physical investment retiurns on two leads and lags of the investment/capital 
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Table 6.3 Different Specifications of Production Parameters 

Industry 6 = 0.06 6 = 0.09 6 = 0.12 <5 = 0.15 6 = 0.18 
A T J A R F C T R J A R J A R F  

Mining 082 10.20 0.79 9^06 0?73 7AA 068 sTtO 064 4.65 
Constm. 0.17 11.46 0.14 7.63 0.12 5.50 0.11 4.36 0.10 3.24 
Manfct. 0.24 6.43 0.23 6.30 0.22 5.62 0.20 4.20 0.19 3.57 
Transp. 0.83 21.20 0.78 19.29 0.75 17.63 0.76 17.45 0.70 14.28 
Commim. 0.87 12.23 0.86 11.03 0.85 10.19 0.83 9.07 0.81 8.07 
Utility 0.87 5.88 0.84 5.33 0.84 5.39 0.85 5.50 0.83 5.08 

ratio to the standard deviation of the fitted value of the same regression for the equity 

returns. The estimated parameter values are reported in table 6.3. As one can see, for 

all the six industries, the parameter values vary within reasonable ranges aroimd the 

estimates reported in table 5.1. 

For each set of new parameter estimates, I construct the physical investment retiun 

series using equation (3.20). Then I apply the procediu:e proposed in chapter 4 to 

examine the vahdity of the spaiming assimiption. The parameter estimates and testing 

statistics are reported in table 6.4. The estimated parameter vector a' identifies the state 

price probability density for physical investment returns, and is the niunerical solution 
- E 

to the optimization problem (4.19). The estimated parameter vector A identifies the 

state price probability density for equity retiunis, and is the nimierical sohition to the 

optimization problem (4.33). In both cases, the Quasi-Newton Method is used to find 

the numerical solutions. Standard errors for estimated Lagrange multipliers are reported 

in the parenthesis. Chi-sqxiare statistics reported in the last colimin are derived from 

(4.40). They are used to test the hypothesis that the risk-neutral probability measiure 

pricing physical investment retiums is identical to the actual probability measure and the 

hypothesis that both physical investment market and financial market share the same 

risk-neutral probability measure. 
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Table 6.4 Robustness Check (I) 

Mining Constm. Manfct. Transp Cormnim. Utility Xfe) 
Panel 1: 5 = 0.06 

-2.33 1.46 -8.62 2.33 4.28 -26.15 26.93 
(2.44) (3.15) (5.27) (2.96) (4.47) (6.62) 

A^ 2.02 -1.93 -6.89 4.66 -6.42 8.11 12.53 
(2.03) (1.85) (3.04) (2.30) (3.09) (3.31) 

Panel 2: 6 = 0.09 

A^ -2.31 1.11 -7.73 2.57 3.58 -24-04 26.44 
(2.23) (3.01) (4.37) (2.67) (4.01) (5.95) 

A^ 1.83 -1.88 -6.73 4.94 -5.96 6.94 11.14 
(2.03) (1.83) (3.14) (2.29) (3.11) (3.28) 

Panel 3: 6 = 0.12 

A' -2.27 0.30 -6.86 2.51 2.59 -18.50 23.97 
(2.13) (2.75) (3.69) (2.44) (3.57) (4.30) 

A"^ 1.64 -1.70 -6.73 5.17 -5.23 5.57 10.57 
(1.95) (1.74) (3.03) (2.22) (3.00) (3.17) 

Panel 4: 5 = 0.15 

A' -1.90 -0.25 -7.54 2.52 2.41 -14.00 21.95 
(2.06) (2.53) (3.52) (2.24) (3.39) (4.18) 

A^ 1.53 -1.56 -6.71 5.26 -4.75 4.65 10.44 
(1.89) (1.67) (2.91) (2.20) (2.95) (3.08) 

Panel 5: <5 = 0.18 

X' -2.00 -0.73 -6.86 2.54 2.21 -12.11 21.09 
(2.02) (2.43) (3.28) (2.19) (3.23) (3.78) 

A^ 1.38 -1.43 -6.69 5.30 -4.22 3.91 10.32 
(1.87) (1.62) (2.86) (2.16) (2.90) (3.03) 

Panel 4 of table 6.4 presents the results when all six industries are assumed to have the 

same depreciation rate 6 = 0.15. Clearly, the qualitative results are very similar to those 

reported in table 6.1. The utiUty industry and the manufacturing industry contribute 

most to identif^-ing the SPD in the physical investment market with — —14.00 

and \inan = —7.54. The t-statistics indicate that both Lagrange multipUers are signif­

icantly different from zero. According to the previous interpretation, I conclude that 
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the utility and the manufacturing industries are the driving force for the deviation of 

the risk-neutral probability measure in the physical investment market from the actual 

probability measiure. Furthermore, the chi-sqviare statistic for testing the joint hypoth­

esis that all the Lagrange multipliers are equal to zero yields a value of 21.95. Since the 

chi-square statistic is significantly higher than the 5% critical value, we reject the null 

hypothesis that the risk-neutral probability measiure is identical to the actual probability 

measure in the physical investment market. 

The last two rows of panel 4 report the parameter estimates and testing statistics 

for the equity market using the SPD recovered from the physical investment market as 

the prior. The Lagrange multipliers = —6.71 and — 5-26 are significantly 

different from zero at the 5 percent significance level, indicating that the manufactiuing 

and the transportation industries contribute most to the deviation of the risk-neutral 

probability measiure in the equity market from that recovered from the physical invest­

ment returns. However, the chi-square statistic testing the joint hypothesis that all the 

Lagrange multipliers are equal to zero yields a value of 10.44, which is less than the 5% 

critical value. Hence, I can not reject the hypothesis that the risk-neutral measure in 

the equity market is identical to that in the physical investment market. 

Panels 1 through 3 and panel 5 report qualitatively similar results. The chi-square 

statistics for testing the spanning assumption are 12.53, 11.14, 10.57, and 10.32, respec­

tively. None of them is significant at 5% significance level. In other words, these provide 

supporting evidence that the payoff space of the physical investment returns spans the 

payoff space of the equity returns. 

In summary, the empirical results derived in section 6.1 are quite robust with respect 

to different specifications of the depreciation rates, the Cobb-Douglas coefiicients, and 

the adjustment cost coefficients. 
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6.2.2 Asymmetric Adjustment Cost Function 

Now I tiim to a different specification of the adjustment cost fimction. In chapter 

3, I adopt a s>-nunetric convex (quadratic) fimction to capture the costs of adjusting 

capital stocks. However, as pointed out by many authors, there is no reason to believe 

that the cost of positive adjustment in the capital stock woidd be the same as that of an 

equal-size negative adjustment. Following Hamermesh and Pfann (1996), I consider the 

following convex adjustment cost fimction that allows for asymmetry in marginal costs 

and contains equation (3.16) as a special case: 

A{I t ,  K t )  =  {exp[r7i(^ - 770)] - -  ̂0) + " ̂0)^ - (6.1) 

where 770 is the rate of physical capital investment that entails no adjustment costs, 771 

and 772 > 0 denote other parameters, and exp(-) is the exponential fimction. Clearly, 

adjustment cost function (6.1) is linear homogeneous in It and Kt, and thus is consistent 

with the basic assumption made by the hterature on the q-theory of investment. Note 

that equation (6.1) reduces to the symmetric adjustment cost fimction (3.16) when 

771 = 0 and 770 = 0. However, when 77^ 7^ 0, equation (6.1) allows for asymmetric 

adjustment costs. If 771 > (<)0, a rate of investment It!Kt higher than 770 entails greater 

(smaller) adjustment costs than an equal-size downward adjustment. Taking derivatives 

with respec:t to It and Kt gives 

Ai{ t )  =  77iexp[77i(-^-770)]-771-<- 772(-^-770), (6.2) 
KT KT 

AK{t) = (1 - ̂ i^)exp[77i(^ - 770)]+771770 - ̂ 772(^-77o)(^ + 770) - 1.(6.3) 

Hence, the physical investment return is defined by equation (3.14) in which CtpKit), 

Ai{t), and Aiic{t) are given by equation (3.17), (6.2) and (6.3), respectively. 

For estimation purposes, I set <5 = 0.10 and TJQ = 6 for all industries. This implies that 

no adjustment costs will occiu- if physical investment is made just to compensate for the 

capital loss due to depreciation. For simplicity, I further assume that 771 is positive and 
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constant across all industries. With a positive value of rji, I essentially assume that the 

adjustment costs of an upward adjustment exceed the adjustment costs of an equal-size 

downward adjustment. To ease the computation biurden, I allow rji to take values from 

0.1 to 0.5 (with an increment of 0.1 each time). For 100% increase of the capital stock 

(i.e.. It!Ki = 1) with no depreciation and 770 = 0, the above values of rji correspond to 

adjustment costs of 0.52%, 2.14%, 4.98%, 9.18%, and 14.8% of the ciurent capital stock, 

respectively. Given the values of 6 and rji, I apply the procedure proposed Ln section 

5.4 to estimate the other imknown parameters (a and r/o) in the physical investment 

retiurn formula. The three panels in table 6.5 report the estimated parameter values for 

qi — 0.10, T]i = 0.30, and r/i = 0.50, respectively. Clearly, the paremaeter estimates are 

not ver>- sensitive to the change of iji. With these parameter estimates, I then construct 

the physical investment return series according to equation (3.14). 

Table 6.5 Parameter E^stimates with Asymmetric Adjustment Costs 

Mining Constm Manfct Transp Commim Utility 
Panel 1 

a  0.48 0.09 0.15 0.34 0.49 0.60 

m  0.10 0.10 0.10 0.10 0.10 0.10 

H i  0.10 0.10 0.10 0.10 0.10 0.10 

m  4.70 4.20 3-40 6.38 8.11 5.70 
6  0.10 0.10 0.10 0.10 0.10 0.10 

Panel 2 
a  0.48 0.09 0.15 0.34 0.49 0.60 

V o  0.10 0.10 0.10 0.10 0.10 0.10 

V i  0.30 0.30 0.30 0.30 0.30 0.30 

V 2  4.60 4.10 3.30 6.30 8.30 5.60 
8  0.10 0.10 0.10 0.10 O.IO 0.10 

Panel 3 
a  0.48 0.09 0.15 0.34 0.48 0.60 

V o  0.10 0.10 0.10 0.10 0.10 0.10 

V i  0.50 0.50 0.50 0.50 0.50 0.50 

m  4.50 4.17 3.10 6.70 7.47 5.40 
6  0.10 0.10 0.10 0.10 0.10 0.10 



www.manaraa.com

59 

With the newly constructed physical investment retiuns, I examine the validity of 

the spanning assimaption by using the nonparametric procediure proposed in chapter 

4. Panel 1 of table 6.6 reports the parameter estimates and testing statistics when 

r]i = 0.10. Similar to the previous results, the manufacturing industry and the utility 

industry are the driving force for identifying the SPD in the physical investment market 

with ^iian — —9.68 and = —7.28 and highly significant t-statistics. The chi-square 

statistic for testing the hypothesis that the risk-neutral measiure recovered from the 

physical investment retiurns is identical to the actual probability measiure takes a value 

of 18.94, leading to the rejection of the above hypothesis. However, the chi-square 

statistic measiuing the deviation of the risk-neutral measure for the equity retiuns from 

the risk-neutral measure for the physical investment returns yields a much smaller value 

of 9.52, less than the 5% critical value with 6 degrees of freedom. This implies that one 

can not reject the hypothesis that the two risk-neutral measures are identical. 

Table 6.6 Robustness Check (II) 

Mining Constm. Manfct. Transp Commim. Utility 
Panel 1; r/i = 0.10 

A^ -0.84 0.26 -9.68 0.44 2.58 -7.28 18.94 
(1.90) (2.50) (3.69) (2.25) (2.56) (3.05) 

A"" 1.28 -1.34 -5.75 4.65 -4.47 3.55 9.52 
(1.78) (1.57) (2.66) (2.13) (2.80) (2.98) 

Panel 2: r/i = 0.30 

A^ -0.83 0.25 -9.83 0.45 2.65 -7.33 19.07 
(1.90) (2.51) (3.71) (2.25) (2.50) (3.07) 

A"" 1.27 -1.33 -5.75 4.66 -4.48 3.56 9.51 
(1.78) (1.57) (2.66) (2.14) (2.80) (2.98) 

Panel 3: rji = 0.50 

A^ -0.76 0.22 -10.10 0.82 2.58 -7.52 19.36 
(1.89) (2.42) (3.75) (2.11) (2.68) (3.12) 

A^ 1.32 -1.19 -5.88 4.70 -4.69 3.86 9.80 
(1.79) (1.58) (2.67) (2.15) (2.82) (2.98) 
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The last two panels of table 6.6 present estimation and testing results for RJI = 0.30 

and 7/1 =0.50, respectively. The chi-sqiiare statistics testing the validity of the spanning 

assimiption are 9.51 and 9.80. Neither of them are significant at the 5% level. Again, 

I find supporting evidence for the sparming assimiption. Hence, the previous empirical 

results are not sensitive to different specifications of the adjustment cost fimction. 
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7. TESTING THE PHYSICAL INVESTMENT FACTOR 

PRICING MODEL 

In the previous chapters, I propose a state price density approach to examining the 

validity of the spanning assumption. Empirical tests iising the cross-indiistry data pro­

vide supporting evidence for the hypothesis that the payoff space of physical investment 

spans the payoff space of financial investment. As argued in chapter 4, if the law of one 

price holds, the spanning assumption immediately implies that there exists a stochastic 

discoimt factor m that is a linear combination of the physical investment returns and 

that correctly prices all equity returns. In this chapter, I stndy the performance of such 

a linear factor pricing model within the GMM framework. In particular, I focus on 

whether the testing results are sensitive to different aggregations of physical investment 

returns and how the state price density approach is related to the traditional linear 

factor pricing approach. 

7.1 Estimation Method 

Following Cochrane (1996), I test the conditional predictions of the following asset 

pricing model; 

I It) = 1, (7.1) 

where 
M 

mt+i = 6o + ("^-2) 
1=1 
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Here, the t  subscript denotes time, is an iV x 1 vector of equity portfolio retvims, 

rrit+i is the stochastic discoimt factor expressed as a linear combination of M physical 

investment returns R(t+i (« = 1,2,..., M), and It denotes the information set containing 

a l l  the  informat ion  ava i lab le  a t  t ime t .  

For notation purposes, define 

b)  =  - 1, (7.3) 

where is an M x 1 vector of physical investment returns, and 6 is an (M + 1) x 1 

vector of factor loadings. Hence, equation (7.1) can be written as 

£ [ M R f + i . I  1 . 1 = 0 .  ( 7 . 4 )  

Let Zt  be a q-dimensional vector of variables that is observable at time Zt  E  I t -  Using 

an iterated expectation argimient, I can derive the following alternative expression for 

the restrictions in equation (7.1): 

E[h{Rf^i ,  b )  ® Zt]  =  0, (7.5) 

where ® denotes the Kronecker product. It is obvious that the conditional restriction 

(7.4) impHes the imconditional restriction (7.5). Conversely, if (7.5) holds for all the 

instnunents Zt in the information set It, then equation (7.4) holds. Hence, one can 

test all the implications of (7.4) by testing the imconditional restriction (7.5), which 

is easier to implement. Of coiu-se, it is impossible to identify and include all of the 

relevant instruments in the empirical tests. In general, one only uses a few carefully 

chosen variables which are most relevant. 

The conditions in equation (7.5) are known as the population orthogonality con­

ditions. I will use these conditions to derive a consistent estimator of the imknown 

parameter vector b. Let /(R^i,R[^i, Zt, b) be an Nq x 1 vector such that 

= / i ( R j ^ i , R f ^ i , 6 )  ®  2 t .  ( 7 . 6 )  
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Then the orthogonahty conditions can be written as 

(7.7) 

The sample coimterpart of the left-hand side term in (7.7) is defined as 

GRW = RL, 
^ t= l  

(7.8) 

where T is the length of the sample period. I assimie that a law of large numbers can 

be applied to grib) so that it converges to its population mean for all b with probabiUty 

one: 

almost surely. 

Following Hansen's GMM approach, I estimate the imknown parameter vector b  by 

minimizing the following quaxlratic form: 

with respecrt to b .  Here, Wr is a positive definite weighting matrix which converges in 

probability to a positive definite matrix Wo-

Under some regularity conditions, the GMM estimator 67- is a consistent estimator of 

b. Furthermore, one can apply a central Umit theorem to show that br is asymptotically 

normally distributed. Define a sequence of A'^g-dimensional rcindom vectors as = 

Zt, b) and a covariance matrix Sf = lini_,-.oc H-j Then 

\/T[b-r—b) is asymptotically normally distributed with mean zero and covariance matrix 

lim GRIB) = E[S{RF^^, Zt, 6)], 
I —"OC 

(7.9) 

./r(fr) = GT{B)'WRGT{B) (7.10) 

A = {D'^WoDO)-'D'qWQSJWODO{D'^WODO)-'\ (7.11) 

where 

Do =  E 
db  

(7.12) 
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To obtain the asymptotic efficient GMM estimator, one needs to set VVQ = In this 

case, the asymptotic covariance matrix is reduced to 

\ = iD'oSj'Do)-K (7.13) 

To empirically estimate the imkno^^Ti parameter vector 6 in the physical investment 

factor pricing model, I follow the commonly used 2-stage GMM algorithm (see Altug 

and Labadie (1994)). 

1. Minimize gr^b) 'g -p ib)  with respect to b .  In the first stage, one essentially minimizes 

•JR^B) by setting WT = I- For notation piu^joses, denote the first-stage estimator 

by  br-

2. Estimate f  t+ i  by setting f  t+v  = bp)  Zt  and use the estimated 

residuals to form a consistent estimator of SF, denoted by ST-

3. Minimize gT{b)'Qrib) with respect to 6. The resulting second-stage estimator 

thr is asymptotically efficient with standard errors given by equation (7.13). 

To empirically test the validity of the physical investment factor pricing model, I 

essentially need to test the null hypothesis that all the orthogonality conditions in equa­

tion (7.5) hold. The proposed testing statistic is defined as T times the minimized value 

of the objective fimction (7.10): 

TMbr) = TgrH^ySr^gribr). (7.14) 

As an extension of the specification test in Sarg2m(1958) and Ferguson(1958), Hansen(1982) 

shows that 

T - J r i b r ) ( 7 . 1 5 )  

where xfviy-Ai-i is a chi-square random var iab le  wi th {Nq — M — I) degrees of freedom. 

If all of the orthogonality conditions are satisfied, then the sample estimate of the test 

statistic TJT should be close to zero. The above test is called the JR test in the literature. 

The chi-sqiiare statistic is usually referred to as the Jr statistic. 
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7.2 Testing the Physical Investment Factor Pricing Model 

To examine the vEilidity of the physical investment factor pricing model, I use the 

same equity return series used in the entropic analysis. For each industry, I use the 

physical investment return series constructed by using the parameter estimates reported 

in table 5.1. To be consistent with the PCAPM, I use the capital-weighted average of 

industry physical investment retiuns as the instnunental variable. Such an instnunent 

is selected because the PCAPM suggests that firms' physical capital investment is the 

linkage between macroeconomic risks and equity retiuns. In addition to the theoretical 

prediction, empirical results in chapter 6 also provide strong supporting evidence that 

physical investment retiurns contain sufficient information that can be used to correctly 

price equity retiurns. Hence, the weighted average of physical investment retiu-ns is a 

pivotal variable in forecasting equity returns, and thus is an appropriate instnunent for 

the GMM estimation. Following Cochrane (1996) and Kasa (1997), the instnunent is 

lagged twice to avoid overlapping with the equity retium series. The six industry no-

arbitrage constraints plus the common instnunent for each industry" result in a system 

of 12 orthogonality (moment) conditions. 

One may want to argue that I should incorporate a more extensive list of instru­

mental variables. It is true that good instniments can enhance the power and reliability 

of the GMM residts. Hansen (1985) provides some discussions on the optimal selection 

of instniments. However, the proposed methods tend to be difficidt for empirical im­

plementation. In empirical applications the instnunent selection relies most on model 

prediction, previous empirical evidence, and subjective judgment. Without knowing the 

true list of all the relevant instnunents, I adopt the conservative approach of only includ­

ing the instnunent that is supported by both the theoretical model and the empirical 

evidence. One other reason that I do not consider a more extensive set of instnunents 

is related to the relatively small size of my sample. Kocherlakota (1990) presents sim-
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Illation results indicating that the small sample properties of the GNIM estimates and 

test statistics deteriorate as the nimiber of instnmients increases. 

7.2.1 Different Aggregations of Physical Investment Factors 

Previous research has used one or two aggregate production technologies and the 

corresponding physical investment returns as factors to explain the expected equity 

returns. To examine whether the empirical results are sensitive to different aggregations 

of physical investment factors, I use the GMM method to estimate and test four factor 

pricing models with different levels of aggregation for the physical investment factors. 

The first linear factor pricing model (Model 1) uses the capital-weighted average of 

industry physical investment returns as the only factor, and is specified as follows; 

MT+I = 6o + 6i R^G^T+V (^-16) 

where 

RAVG,T+L = ^^6 77 
Z^i=l ^IT+L 

Here, and denote the physical investment return and the physical capital 

stock for industry i  at time i 4-1- The above model essentially aggregates the six industry 

physical investment returns into one single factor. The aggregated investment return 

^'avg.L+i interpreted as the return generated by one aggregate production 

tec;hnology. 

The second factor pricing model (Model 2) uses two factors to construct the stochastic 

discoimt factor m. One is the capital-weighted average of physical investment retiurns for 

the mining, transportation, commimication, and iitiUty industries, denoted by 

The other is the capital-weighted average of physical investment returns for the con­

struction and manufacturing industries, denoted by Rivg2,t+i- The model can then be 

wTitten as 

"^£+1 =  bo +  + i  +  ̂ 2^Lg2, t+ l -  (7 -18)  
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Here, I aggregate the physical investment returns of the six industries into two factors. 

The first factor represents industries which are more capital intensive. The estimated 

as (see table 5.1) for the four industries aggregated into the first factor are all above 

0.75. The second factor represents industries which are less capital intensive, since 

the estimated qs for the construction and manufactiuring industries are below 0.25. 

Therefore, the two factors in equation (7.18) may also be interpreted as the physical 

investment retiuns generated by two aggregate production technologies with diflFerent 

capital intensity. 

The third factor pricing model (Model 3) studied uses three factors to explmn the 

cross-industry variation in equity retiurns. The model can be stated as 

^t+l  =  bo +  6l/?maTi,£ + l + ^2^u£t/,£+l + (7-19) 

where R^an.t+i the physical investment retium for the manufactiu-ing industry, 

denotes the physical investment retiun for the utility industry, and Ravgs.t+i 

denotes the capital-%veighted average of physical investment retiums for the mining, con­

struction, transportation, and communication industries. Since the entropic results in 

chapter 6 indicate that the manufactiuring industry and the utiUty industry contribute 

most for identifying the SPD in physical investment market, the above model incorpo­

rates the physical investment returns for these two industries as two separate factors. 

Similar to the first two models, the weighted average physical investment return for the 

remaining four industries may be interpreted as a retimi generated by one aggregate 

production technology. 

The fourth and final Unear factor pricing model (Model 4) examined uses all six 

physical investment returns as separate factors. Specifically, 

6 

"^£4-1 = ^0 + (7.20) 
1=1 

Clearly, the model allows for the physical investment return of each industry to be 

generated by a separate production technology-'. 
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In siimmary, the first two factor pricing models iise one or two highly aggregated 

factors to construct the stochastic discoimt factor m. This is the traditional approach 

adopted by Cochrane (1996) and Kasa (1997) in the empirical PCAPM Uteratiire. The 

last two factor pricing models use relatively disaggregated production technologies to 

construct factors. Such an approach may alleviate the potential joint hypothesis test 

problem encoimtered by the traditional approach. For the remaining of the section, I 

apply the GMM method to estimate and test all four factor pricing models, and pay 

special attention to whether the empirical results are sensitive to different aggregations 

of the physical investment factors. 

7.2.2 Estimation Results 

Table 7.1 reports the GMM estimation results for the above four physical investment 

factor pricing models. For each factor pricing model, the table reports the estimated 6s, 

the Jf statistic, and the p-value. The JT statistics are calculated from equation (7.14). 

Under the null hypothesis that the particular physical investment factor pricing model 

holds, all of the orthogonality conditions will be satisfied and the JT statistic should be 

equal to zero. The first two rows of table 7.1 report the GMM residts for the first two 

factor pricing models, in which one and two aggregated physical investment returns are 

used to constnict the stochastic discoimt factor m. The JT statistic is 20.76 for the first 

model and 21.92 for the second model. Both statistics are significantly higher than the 

0% critical value, leading to the rejection of the null hypotheses. Hence, the factor pricing 

models using highly aggregated physical investment retiuns as factors fail to capture 

the cross-industry variations in expected equity retmns. The last two rows of table 7.1 

report the GMM results for the last two factor pricing models, in which less aggregated 

physical investment returns are used to constnict the stochastic discoimt factor m. The 

JT statistics are 11.56 and 2.88, respectively. Since both statistics are substantially lower 

than the 5% critical values, one can not reject the nidi hypothesis that the corresponding 
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Table 7.1 Testing Statistics of the Linear Factor Pricing Models 

BO 6i THL BZ 64 bs B& JT P 
Model 1 0.94 -0.03 20.76 0.02 

(0.57) (0.52) 
Model 2 -1.22 3.80 -1.77 21.92 0.01 

(2.76) (3.91) (1.49) 
Model 3 -0.80 -0.18 -1.56 3.35 11.56 0.17 

(4.43) (2.11) (6.06) (3.50) 
Model 4 13.98 1.72 1.76 0.16 -3.69 6.61 -18.64 2.88 0.72 

(14.13) (3.20) (10.02) (7.02) (10.61) (7.08) (15.62) 

physical investment factor pricing model holds. Therefore, the factor pricing models 

using disaggregated physical investment returns as factors perform well in explaining 

the cross-indiistry variations in expected equity returns. This further confirms the result 

reported in chapter 6 that the industry physical investment returns contain sufficient 

information to correctly price the corresponding industry equity portfoho returns. 

The above results indicate that the empirical performance of the linear factor pricing 

model is sensitive to different aggregations of physical investment returns. This high­

lights the joint hypothesis test problem embedded in the traditional approach adopted 

in the empirical PCAPM literature. Although using one or two highly aggregated phys­

ical investment returns as factors provides a parsimonious factor pricing model, there 

is no reason to believe that aU of the intertemporal physical investment opportimities 

in the economy can be well captured by one or two aggregate production technologies. 

Assuming that a couple of physical investment return factors will suffice is not a pre­

diction of the PCAPM theory, but an additional modeling assimiption. Hence, once the 

factor pricing model is rejected by the data, one is not clear whether the rejection comes 

from the violation of the spanning assimaption, or from the inappropriate aggregation of 

production technologies. By incorporating relatively disaggregated physical investment 

returns into the model, one can at least alleviate the above joint hypothesis problem 
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and draw more robust conclusion about the validity of the PCAPM. 

7.3 Relationship between the State Price Density Approach 

and the Linear Factor Pricing Approach 

In this section I discuss how the state price density approach proposed in chapter 4 

is related to the linear factor pricing approach adopted in this chapter. Both approaches 

are used to examine the pricing relationship between the physical investment retiums 

and the equity retiuns. Specifically, one focuses on whether physical investment retiuns 

contain sufficient information that can be used to correctly price equity retiuTis. 

The traditional linear factor pricing approach examines the performance of a hnear 

physical investment factor pricing model in explaining the cross-sectional variations in 

expected equity retiums. On the other hand, the state price density approach inves­

tigates the validity of the spanning assimiption, which states that the payoff space of 

physical investment spans the payoff space of financial investment. The spaiming as­

sumption and the physical investment factor pricing model are closely related to each 

other. If the spanning assumption holds, then the law of one price implies that there 

exists a stochastic discoimt factor that can be written as a linear combination of the 

physical investment retm-ns. Hence, the validity of the physical investment factor pric­

ing model is an immediate implication of the spanning assiunption and the law of one 

price. Moreover, both approaches construct the estimation and testing procediures based 

on the no-arbitrage constraints. While the linear factor pricing approach estimates and 

tests a parametric specification of the stochastic discount factor, the state price density 

approach uses nonparametric techniques to compare the SPDs recovered from physical 

investment returns and equity returns. Since the stochastic discoimt factor and the SPD 

have a one-to-one correspondence in the absence of arbitrage, the two methods can be 

viewed as dual approaches to examining the pricing relationship between the physical 
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capital investment and the financial investment. 

One advantage the state price density approach has over the linear factor pricing 

approach Ues in the fact that the stochastic discoimt factor m in the physical investment 

factor pricing model may be negative. I compute the estimated stochastic discoimt factor 

in equation (7.20), and find that m takes negative values in 11 out of 49 years. Even if 

one puts nonnegativity constraint for m in the GMM estimation to ensure that m takes 

on positive values in the sample, there is no guarantee that out-of-sample m still remains 

positive. Negative m implies that there exist arbitrage opportimities in the economy. 

This is not a desirable property for any asset pricing model. It seems puzzling that 

one starts from no-arbitrage constraints for both the physical capital investment and 

the financial investment, but ends up with a factor pricing model allowing for arbitrage 

opportunities. 

The conflicting residts come from the fact that the law of one price is less restrictive 

than the absence of arbitrage. Recall from section 4.1 that the existence of the Unear 

factor pricing model (4.3) is guaranteed by the law of one price. However, the law of 

one price is a weaker constraint than the absence of arbitrage. The law of one price only 

requires that two assets with identical future payoff structures shoidd have identical 

prices. It does not cover cases in which one asset dominates another but may do so by 

different amoimts in different states. Hence, the law of one price alone does not preclude 

possible arbitrage opportunities in the economy. This is equivalent to say that the 

stochastic discount factor in (4.3) may be negative in some states. Therefore, although 

the spanning assumption and the law of one price guarantee the existence of a stochastic 

discoimt factor of the form (4.4), such an m is not Ukely to be the one prevaiUng in an 

economy without any arbitrage opportunity. 

The state price density approach, on the other hand, focuses on the key assump­

tion leading to the existence of a stochastic discoimt factor of the form (4.4), namely 

the spanning assumption. Instead of assuming a parametric form for m, the proposed 
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nonparametric procedure recovers and compares the SPDs for the physical investment 

market and the financial market. The positivity and additivity constraints are expUcitly 

incorporated into the optimization problem to ensiire that the estimated SPD is the le­

gitimate Radon-Nikodym derivative between the risk-neutral (or equivalent martingale) 

measure and the actual probability measure. From equation (4.15) one can see that 

the estimated SPD follows a strictly positive and quite flexible generalized exponential 

density. Therefore, the state price density approach is inherently consistent with the 

no-arbitrage constraints. Moreover, since the proposed nonparametric procediure does 

not impose much restriction on the stnictiure of the stochastic discoimt factor or the 

risk-neutral measiu-e, the estimation and testing results are more robust than the linear 

factor pricing approach. 

As concluded in section 7.2.2, over-aggregation of production technologies (or phys­

ical investment retiuns) may lower the explanatory power of the factor pricing model. 

Hence, it may be desirable in many applications to include disaggregated physical in­

vestment retiums as factors. The GMM estimation only allows limited flexibility in 

expanding the set of factors. Since the niunber of imknown parameters in the physical 

investment factor pricing model increases Unearly with the niunber of factors included, 

one needs at least as many orthogonality conditions to perform parameter estimation. 

To c:onduct the Jr test, the niunber of orthogonality conditions must exceed the niunber 

of factors. In many cases, it may weU be that the number of securities is less than the 

desirable number of factors. One way to expand the set of orthogonality conditions is 

to include more instruments. However, the selection of instruments has always been 

problematic and bedeviled the applications of GMM. Moreover, simulation results have 

shown that the small-sample properties of GMM estimates and test statistics deteriorate 

with the number of instniments. 

Partly due to the above reasons, most empirical applications adopting the linear 

fac;tor pricing approach use only one or two highly aggregated production technologies 
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to construct the stochastic discoimt factor, and thus suffer from the potential joint 

hypothesis test problem. On the other hand, the state price density approach proposed 

in chapter 4 does not put any restriction on the nimiber of physical investment retiurns 

or the munber of equity returns involved in the study. The entropic technique allows 

me to extract pricing information separately from the physical investment market and 

the financial market. Such separation provides much more flexibiUty in incorporating 

disaggregated physical investment retiuns than the GMM estimation. The entropic 

procediure can be easily applied to cases when the nmnber of physical investment retiums 

(factors) exceeds the nimiber of no-arbitrage constraints (moment conditions) for equity 

returns. 
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8. CONCLUSION AND FUTURE RESEARCH 

8.1 Summary of Results 

In this paper I examine the pricing relationship between physical investment returns 

and equity retvims iising industr>'-level data. One commonly used approach to empiri­

cally testing the implications of the PCAPM is to study the validity of a linear factor 

pricing model, in which highly aggregated physical investment returns are the only fac­

tors used for pricing equity returns. However, the physical investment factor pricing 

model is not always consistent with the spirit of no-arbitrage since the stochastic dis­

count factor may take negative values. Moreover, the traditional approach suffers from 

a joint hypothesis test problem because the performance of the factor pricing model 

depends both on the validity of the spanning assimiption and on the spanning ability of 

the selected production technologies. 

Based on entropic principles and no-arbitrage constraints, I propose a nonparametric 

test to study whether the payoff space of physical investment spans the payoff space of 

financial securities. The proposed test recovers and compcures the SPD for both the 

physical investment market and the stock market. The spanning assumption can not 

be rejec:ted if the two SPDs are not significantly different from each other. In this case, 

there is supporting evidence that industry physical investment returns contain sufficient 

information to correctly price the corresponding equity portfoUo returns. Otherwise, 

the spanning assimiption and the physical investment factor pricing model have to be 

rejGc:ted. 
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I iise indiistry-level data to empiriceilly test the validity of the spanning assumption. 

Time series of annual physical investment returns and equity returns are constructed for 

each of the following six industries: mining, construction, manufactiuring, transportation, 

conmiimication, and public utilities. The empirical results show that the SPD recovered 

from the physical investment retiuns is able to correctly (in a statistical sense) price the 

corresponding equity retiuns. This pro\ides supportive evidence that the payoff space 

of physical investment spans the payoff space of financial secvurities. Robustness check 

shows that the above results are not sensitive to a wide range of parameter values and 

different fimction forms for adjustment costs. 

I also apply the same data to test the validity of several physical investment fac­

tor pricing models. The factor pricing models using disaggregated industry physical 

investment returns as factors perform well in explaining the cross-industry variations 

in expected equity retiums. This confirms the previous result that physical investment 

returns contain sufficient information that can be used to correctly price equity retiums. 

However, fiurther study reveals that the physical investment factor pricing model is not 

always consistent with no-arbitrage condition because the realized stochastic discoimt 

factor takes on negative values in some years. 

The empirical findings in this study highlight the fact that physical capital investment 

conveys important information on financial asset pricing. The empirical faihure of the 

traditional CAPM and the CCAPM may be due to the fact that neither the market 

return nor consiunption decisions are able to captiu-e some important intertemporal 

physical investment opportimities in the economy. To explain both the time-series and 

the c;ross-sectional variations in expected equity retiurns, more works need to be done 

to explicitly model the impacts of key production characteristics (e.g., the adjustment 

c:ost) on asset prices. Such models will generate much richer testable implications than 

models focusing exclusively on the financial sector of the economy. 

The work presented in this study as well as Cochrane (1996) and Kasa (1997) is 
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actually closely related to the empirical q-theory literature. Tobin's q is defined as the 

price of existing capital relative to new capital. The relationship between Tobin's q 

and physical investment expenditure has been a central topic of empirical investment 

literature. The q-theory of investment (Tobin (1969) and Tobin and Brainard (1977)) 

states that the firm's demand for new capital investment, as measured by its physical 

investment expenditures, should be positively correlated with the market value of ex­

isting capital stock relative to its replacement cost (the average q). In other words, 

the q-theory predicts that the firm should increase its physical capital investment as 

long as the market valuation of physical capital exceeds the investment cost. Hence, the 

time-series and cross-sectional variations in physical capital investment can be explained 

by the changes in the market value of firm's capital stock. Hayashi and Inoue (1991) 

construct a tax-adjusted measure of q and test the q-theorj-- of investment using panel 

data on firms from Japan. The empirical residts show that q is a significant determinant 

of physical capital investment. Blimdell, Bond, Devereiix, and Schiantarelli (1992) ex­

amine the q-theory using panel data on firms firom the United Kingdom, and find that 

the coefficient on q is significant but small. 

Compared with the empirical q-theory Uteratiure, the approach adopted by the em­

pirical studies on PCAPM actually reverses the logic behind the q-theory of capital 

investment. Instead of using stock market information to explain the physical capital 

investment, the empirical PCAPM literature uses the change of firms' physical capital 

im'estment decisions to explain the time-series and cross-sectional variations in equity 

returns. In the PCAPM, the fundamental source of imcertainty in both the physical 

investment market and the stock market is the business cycle caused by macroeconomic 

risks. Since the intertemporal nature of production is a central determinant of the course 

of real business fluctuation, the variations in equity returns should be determined by the 

effects of macroeconomic risks on physical investment decisions. Consequently, physical 

capital investment should contain crucial information necessary for correctly pricing fi­
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nancial securities. The empirical results documented in this study provide supporting 

evidence for the above argiunent since the state price density recovered from physical 

investment returns is able to price the corresponding equity retiuns. Clearly, the em­

pirical q-theory Uteratiue and the empirical PCAPM literatiure are just two sides of the 

same coin, and are therefore consistent with each other. 

8.2 Future Research 

In this paper I propose a nonparametric procedure to study the pricing relationship 

between the physical investment retiuns and the equity returns. In particular, I examine 

whether the SPD recovered from the physical investment retiuns can be used to correctly 

price the equity retiurns. One may notice that I have exclusively focused on recovering 

and comparing imconditional SPDs (or risk-neutral probabihty measures). However, if 

one worries about things like GARCH effects, then it may be the case that conditional 

risk-neutral probability measiures are of more interest. The conditional probabihty mea­

sure refers to the distribution of a return (either the physical investment retiun or the 

equity return) at time T conditional on all the information available at time T. The in­

formation set at time T includes at least all of the return realizations in the past. Hence, 

one direction of future research is to find ways to recover and compare the conditional 

risk-neiitral measiures for the physical investment returns and the equity returns. 

Unfortunately, the method for recovering the conditional risk-neutral measure from a 

time series of returns is not a trivial extension of the imconditional method. Somewhat 

surprisingly, the estimation of conditional risk-neutral density has not been explored 

much in the empirical asset pricing literatiue. There are some works in the option pricing 

literature estimating the conditional SPDs for the imderlying stock prices. However, the 

technique used relies on one convenient relation between option prices and SPDs, which 

suggests that the second derivative of the call-pricing fimction with respect to the strike 
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price miist equal to the SPD. This property was first discovered by Ross (1976), Banz 

and Miller (1978), and Breeden and Litzenberger (1978). Ait-Sahalia and Lo (1998) 

construct a nonparametric call-pricing formula, and applies the above property to derive 

an estimate for the conditional SPD. 

Clearly, the above approach can not be genereilized to other cases when the stated 

relationsliip between asset prices cmd conditional SPD does not hold. More generally, if 

one does not want to impose parametric assumptions on the return generating process, 

the problem to be solved can be stated as the problem of efficient non-parametric es­

timation of the conditional SPD (or risk-neutral measme) subject to some conditional 

moment conditions (e.g., no-arbitrage constraints). Let R{t) be a iV x I random vector of 

asset returns for i = 0,1,..., T and /(•) be the density function for the risk-neutral mea­

sure. The following three-step procedure provides one way to estimate the conditional 

risk-neutral measiure. 

1. Construct a non-parametric estimate of the joint risk-neutral density f{R{T), R{T— 
1),..., /?(0)) for all the return vectors subject to the conditional no-arbitrage con­

straints. 

2. Estimate the marginal density f{R{T — 1),...,/2(0)) for all the retiun vectors 

dated in the past beised on the joint density estimate from step 1. 

3. Estimate the conditional risk-neutral density by utilizing the definition of condi­

tional density: 

fr/7fTM/?rT n ;?mii fWT),mT-\) /?(0)) 

Implementing the above procediure is obviously not a trivial task. Especially for step 

1, one needs to figiure out how to efficiently incorporate all of the information in the 

conditional constraints into the estimation of the joint risk-neutral density. 
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For future research, I would like to see how the entropic approach proposed in chap>-

ter 4 can be modified to recover and compare the conditional SPDs for the physical 

investment returns and the equity returns. Examining the sparming assumption from a 

conditional perspective will contribute to both the empirical PCAPM literature and the 

conditional density estimation in the empirical asset pricing literatiure. 

As another extension to the ciurent research, I would Uke to examine how differences 

in adjustment cost are related to the cross-industry variations in equity returns. As 

pointed out in chapter 1, the existence of adjustment cost may play an important role 

in determining the price persistence, the volatility, and the risk premia of risky assets. 

Since the cost of adjusting capital stock varies significantly across industries, a cross-

industry study w^ill shed light on the direction and magnitude of the pricing impact of 

adjustment cost. Such study may also provide a list of stylized facts that should be 

captured by any model focusing on the impacts of key production characteristics on 

asset prices. 
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APPENDIX A. ENTROPIC PRINCIPLES 

This appendix provides a brief introduction to entropic principles and derives the 

sohition to the maximiun entropy problem and the cross-entropy minimization prob­

lem. For a rigorous and complete description of entropy concept and its applications in 

ec;onomics and finance, please refer to Golan, Judge and Miller (1996). 

The entropy measure originates from physics. It was first proposed in the 1870s to 

measiure the information in a distribution that defines the thermodyntunic state of a 

physical system. In an information theoretic context, it is used to measiure imcertainty 

or missing information. Shannon (1948) first proposes to use the entropy measme to 

gauge the imcertainty embedded in a noisy message. Based on Shaimon's entropy metric, 

Jaynes (1957) develops a maximimi entropy principle that forms a basis for estimation 

and inference of iU-posed, piu:e inverse problem. In the presence of prior knowledge. 

Good (1963) proposes to use the minimum cross-entropy principle to ensiure that the 

estimation and inference are consistent with both the information in the data and the 

prior belief. Both the maximiun entropy principle and the cross-entropy minimization 

principle have been used as effective information processing rules when the observed 

sample data are limited and aggregated, and when the imderlying sampling model is in­

complete or incorrectly specified. For example, in this study I examine whether the state 

price density (or risk-neutral measiure) recovered from the physical investment retiurns 

can be used to correctly price the equity retiuns. Without any modehng assumption, 

the only information we have is the return series. Given the observed return series, the 

state pric e densities satisfying the no-arbitrage constraints are in general not imique. To 
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identify the state price density that is most consistent with the incomplete information 

we have, we need some sort of information processing rule to make an optimal selection 

from the feasible set of state price densities. Hobson (1971) shows that, imder some 

axiomatic conditions, entropy criterion is the most efficient (in terms of information 

processing) rule that we should adopt. In the following sections, I will illustrate the 

maximum entropy principle and the minimimi cross-entropy principle in the context of 

recovering the unknown probabihty distribution from the incomplete information (data) 

at hand. I will first describe each principle in discrete case, and then extend to the 

continuoiis case. 

Shannon's Entropy 

Suppose that there are S possible outcomes for a future event with a discrete prob­

ability distribution p = (p(l),p(2),... ,p(S)). To measure the imcertainty of the above 

random event, Shaimon (1948) uses an axiomatic method to define the entropy of the 

probability distribution p as 

^(P) = - logP(«)- (A-1) 
S = l  

Here — log(-) can be interpreted as an information score measiuring the information gath­

ered from observing a particular outcome. The negative log fimctional form implies that 

the information score of a particular otitcome is inversely proportional to its probabil­

ity. By averaging the information scores over all possible outcomes, H{p) gives us the 

e x p e c t e d  i n f o r m a t i o n  g a i n e d  f r o m  t h e  o c c u r r e n c e  o f  a  f u t u r e  e v e n t .  N o t e  t h a t  H { p )  

reaches its maximimi when the possible outcomes are imiformly distributed. In this 

case, one is completely imcertain about which outcome will occiu". 

Shannon's entropy is also closely related to the concept of maximiun likelihood esti­

mation. Suppose that nature carries out K trials with S possible outcomes for each trial. 

L e t  ki. k-2,... ,ks he t h e  n i u n b e r  o f  t i m e s  e a c h  o u t c o m e  o c c u r s .  N o t e  t h a t  k^ = K. 
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Further. let VV be the total mimber of ways a particular {ki,ko,..., ks) can be realized 

in K trials, i.e., 

AT' 
W = . (A.2) kilkol.-.ksl ^ ^ 

Golan. Judge and Miller (1996) show that 

K-^logVV^H{p) (A.3) 

if K is large enough. Therefore, maximizing Shannon's entropy is approximately equiv­

alent to choosing a probability measure (p{l),p{2),... ,p{S)) that can be realized in 

the greatest number of ways. This is consistent with the spirit of maximimi likelihood 

estimation. 

Maximum Entropy Principle 

In mtxny cases, •we need to recover a probability distribution from a given set of mo­

ment constraints. In general the feasible probability distributions satisfying the moment 

c'onstrmnts are not imique. The problem of selecting a particular probabiUty distribution 

from the feeisible set is said to be iU-posed or imdetermined. In discrete state case, the 

ill-posed problem often takes the form that the niunber of states of the world exceeds 

the number of moment constraints. 

As before, we assiune that there are finite niunber of states of the world, denoted by 

s for .5 = 1,2,..., S. Suppose that there are a total of N {N < S) moment constraints 

for the random variable x, and that these moment constraints are the only information 

available: 

^p{s)fr{x{s)) =yi, I = 1,2, ...,iV. (A.4) 
S=1 

where /,(•) is a fimction of random variable x. The problem of recovering p is iU-posed 

be<:ause the number of states of the world S exceeds the niunber of constraints iV. 
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To selec:t a particular probability distribution which is the best estimate of the un­

known p, Jaynes (1957a,b) proposes to solve the following maximization problem; 

m^iy(p) = - p(s) log p(s) 
5=1 

(A.5) 

subject to 

5^P(.S)/.(x(5)) = YI. z = l,2,....iV, 
S — i  

3=1 

p{s) > 0, s  =  1 , 2 , . . . , S .  

(A-6) 

(A-7) 

(A.8) 

To recover the probability distribution p, one can form the Lagrangian fimction 

L = - 5^p(s)logp(s) + ̂ \i[yi - +-^0(1 - 5Ip(«)) (A-9) 
s=  1  1 = 1  S=1 S=1 

with first-order conditions 

dL N 
= -logp(s) - 1-]^Ai/i(x(s)) - Ao =0, s = L2, ....5, (A.IO) 

DP\S) ^ 

dL ^ 
JTIR = = 0' 

s=l  

= 1 - I ^ p ( 5 )  =  0 ,  
s=l 

DXI 

dL 
DXO 

z  =  L  2 , . . . ,  N ,  (A.ll) 

(A. 12) 

where A = (Aq.  Ai,  . . . ,  A y v )  are the Lagrange multipliers. Manipulating terras in equa­

tions (A.IO), (A.ll) and (A. 12) yields 

Pis) = exp 
.v 

- 1 - Ao 
i=l  

Vi = Yl 
1 = ^exp 

S = I  

- ̂  Xifi{x{s)) - 1 - ̂  
t=l 

i=l  

s = L2.....S. (A.13) 

Mx{s)), i = l,...,iV, (A.14) 

(A.15) 

Equation (A.15) implies that 

exp(l + Ao) = ^ exp 
5=1 

N 

i=\ (A. 16) 
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Substituting equation (A. 16) into equation (A. 13) gives 

-/ X exp [-Eili Ai/<(a(s))] 
P{s) = —7; (A.17) 

where 
5 

= - 11^.7. (2^(s)) - (A.18) 
i=l 

The Lagrange multipliers are determined by the following equations: 

(A.19) 

The optimimi value of the entropy measiure H can be derived by substituting equa­

tion (A.17) into equation (A.5): 

Golan, Judge and Miller (1996) show that the above maximization problem has a 

unique solution because the Hessian matrix is negative definite. Fmther, the solution 

p satisfies both the additivity and the positivity constraints. Note that p depends on 

the Lagrange multiplier A. Under the ciurent problem setup, there is no closed-form 

solution for A and the solution must be obtained mmierically. 

The above maximum entropy formulation allows us to select a probability distribu­

tion that only describes what we know (the information incorporated in the moment 

constraints). The solution p is the best estimate possible in the sense that it can be 

realized in the greatest number of ways consistent with all the information we have. 

Suppose now that a: is a continuous random variable with probability density fimction 

p{x). As a straightforward extension of the discrete case maximiun entropy principle, 

the continuous formalism can be stated as 

/f(A) =logQ(A)-f-^Ai7/. .  (A.20) 
1=1 

max p H{p) = - JPi^) ̂ ogp{x)dx (A.21) 
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subject to 

J p(x)fi{x)dx = yi, 2 = 1,2,...,/^, (A.22) 

j  p{x)dx = 1, (A.23) 

p{x) > 0. (A.24) 

To recover the probability density function p{x), one can form the Lagrangian func­

tion 

L = - jp{x) logp(x)<fx + ̂  Ai[?/, - jp{x)fi{x)dx\ + Xoil - Jp{x)dx) 
N .  N 

= Y. + ̂ 0+ [-p{.x) logp(x) - p{x) Xifiix) - Xop{x)]dx. (A.25) 
1=1 •' .=i 

By using the calculus of variations, the first-order condition with respect to p{x) is given 

by 
N 

- logp(x) - 1 - X] - >^0=0- (A.26) 
t=i 

Similar to the discrete case, the first-order conditions with respect to the Lagrangian 

multipliers are given by 

Hi - j  p { ^ ) f i { ^ ) d x  = 0, i = 1,2 ,  (A.27) 

1 — p(x)dx = 0. (A.28) 

Equation (A.26) implies that 

p(x) = (^29) 
exp(l-t-Ao) 

Substituting equation (A.29) into equation (A.28) gives 

exp(l + Ao) = f exp(- ̂  Ai/,(a:))dx. (A.30) 
i=i 

Combining equations (A.29) and (A.30) gives us the optimal solution for p(x): 
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where 

(A.32) 

As in the discrete state case, the Lagrange multiplier A does not have a closed-form 

solution and must be obtained numerically. 

Minimum Cross-Entropy Principle 

Besides the data, we sometimes have prior beliefs or non-sample information on the 

luiknown probabiUty distribution p. Suppose that the non-sample information takes 

the form of a probability vector q = (g(l), g(2),..., g(S)) in the discrete case. The 

question then becomes how to choose the best estimate of the xmknown probability 

measiure p based on the moment constraints (A.6) and the prior information q. UnUke 

the maximum Shannon-entropy framework. Good (1963) proposes to minimize the cross-

entropy between the probabiUty measiures consistent with the data information and the 

prior information q. 

The cross-entropy /(p.q) between the two probability measiures p and q is defined 

as 

The concept was first developed by Kullback and Leibler (KuUback (1959)), and is also 

known as the Kidlback-Leibler Information Criterion (KLIC). Clearly, /(p,q) = 0 if p 

and q are identical. Otherwise, it can be shown that /(p,q) > 0. In the special case 

t h a t  q  i s  a  u n i f o r m  d i s t r i b u t i o n ,  / ( p , q )  =  l o g ( ' 5 )  -  Hip). 
Following Good (1963), the imknown probability distribution p can be recovered by 

solving the following minimization problem: 

(A.33) 

min/(p, q) (A.34) 

subjcc:t to equations (A.6), (A.7) and (A.8). 
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The Lagrangian function can be written as 

+ H ~ IIp(«)/i(2^(s))] + - I^p(s)) (A.35) 
5 

with the first-order conditions 9£/5(-) = 0. Carrying through the same steps as with 

the maximimi entropy problem, we can solve p from the first-order conditions as 

Again, there is no closed-form solution for the Lagrange miiltipUer A and the solution 

has to be foimd numerically. 

The minimima cross-entropy framework guarantees that, among all the probabihty 

distributions satisfying the moment constraints, the optimal solution p is the one closest 

to the prior information q. The optimal solution p is selected in such a way that 

no information other than the moment constraints are incorporated in the process of 

updating the prior q. 

The relationship between the maximiun Shannon-entropy and the minimmn cross-

cntropy is as follows. The maximimi Shannon-entropy is nested in the minimiun cross-

entropy framework. To see this, recall that /(p, q) = log(S) — ^(p) if q is a discrete 

luiiform distribution. In this case, minimizing the cross-entropy /(p.q) is equivalent to 

m a x i m i z i n g  t h e  S h a n n o n - e n t r o p y  H { p ) .  

Suppose now that we have a continuous random variables x with probabiUty density 

function p{x). Define q{x) as the prior belief of the probability density fimction. The 

continuous version of minimum cross-entropy principle can then be stated as 

(A.36) 

where 

(A.37) 

mm p jp{x) log(^||y)(/x = Jp(x) logp{x)dx - Ip{x) logq(x)dx (A.38) 
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subject to 

J p{x)fi(x)dx = yu i = 1, 2 , AT, (A.39) 

j p{x)dx = 1, (A-40) 

p(x) > 0. (A.41) 

The Lagrangian function can be written as 

iV L = Jp{x) \ogp{x)dx - jp{x) logq(x)dx + ̂  A,[y. - jp{x)fi{x)dx] 
+ A o ( l  -  Jp{x)dx) 
/v 

1=1 

+ [b(^) logp(^) - p(^) log 9(2:) - p(x) A./f(x) - Xop{x)]dx. (A.42) 
1=1 

Using the calcuhis of variations, the first-order condition with respect to p{x) can be 

expressed as 
/v 

logp(x) + 1 - log7(0;) - ̂  Xifi{x) - Ao = 0. (A.43) 
1=1 

Manipulating terms gives 

N p{x) = q{x) exp[^ Ai/i(x) + Aq - 1]. (A.44) 
1 = 1  

The first-order conditions with respect to the Lagrange midtipliers are given by 

Vi - jp{x)fi{x)dx = 0 ,  2 = 1 , 2 , . . . ,  N, (A.45) 

1 — y p{x)dx = 0. (A.46) 

Substituting equation (A.44) into (A.46) gives 

exp(Ao — 1) = (A.47) / q{x) exp[E;=i A,/ ,(x)]dx 

Combining equations (A.44) and (A.47) gives the solution for p(x) as 

p(x) = (A.48) 
Q(A) '  
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where 
/V 

= [ <l{^)exp[^Xifi(x)]dx. (A.49) 
1=1 

Denote P and Q as the cumulative probability distribution fimction corresponding 

to p{x) and q{x), respectively. Then the solution (A.48) can be rewritten as 

dP exp[EiIi Ai/i(x)] 
d Q  Q(A) 

where 

(A.50) 

n(A) = £:Q{exp[^ Xifi{x)]}. (A.51) 
«=i 

Here EQ denotes the expectation taken with respect to the probability distribution Q. 

The Lagrange raidtipher A can be foimd by solving the following convex minimization 

problem: 

A = argminf2(A). (A.52) 
A 
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APPENDIX B. NO-ARBITRAGE AND ASSET PRICING 

In this appendix, I briefly review asset pricing representations under the absence of 

arbitrage. For illustration purpose, I assume that the states of the world are finite and 

discrete. All the major residts can be extended to the case when the states of the world 

are continuous. 

The asset pricing theories in modern finance literatiure are based on the assimiption 

that no arbitrage opportiuiities are available in eqiiilibriiun. The following Fundamen­

tal Theorem of Asset Pricing (Dybvig and Ross (1992)) states the implication of 

no-arbitrage on asset pricing. 

Theorem 1 The follovring are equivalent: 
• Absence of arbitrage 
• Existence of a positive linear pricing rule 
• Existence of an optimal demand for some agent who prefers more to less 
Assume that there are finite number of states of the world, denoted by s for 5 = 

1 . 2 ,  . . . , 5 ,  a n d  t h a t  t h e r e  a r e  f i n i t e  n i u n b e r  o f  r i s k y  c i s s e t s ,  d e n o t e d  b y  i f o r  i = 
1. 2,.... .^V. According to the above theorem, the absence of arbitrage implies that 

5 

Y^ij{s)Ri{s) = I, i = L2,...,/V, (B.l) 
S = \  

where iij{s) is the positive state price that correctly prices all assets in state s, and Ri{s)  
is the gross rate of return for asset i if state s occurs. The xb{s) is the positive linear 
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pricing nile referred to in the Fundamental Theorem of Asset Pricing. It is the current 

price of an Arrow security which promises to pay one dollar in state s and zero dollar 

in all other states. 

Several other alternative representations of the basic linear pricing rule are also avail­

able. Among these, the risk-neutral (or martingale) representation and the stochastic 

discoimt factor representation are most frequently used. The choice of a particular rep>-

resentation depends on the specific context of the problem imder investigation. The 

risk-neutral representation (Cox and Ross (1976), Harrison and Kreps (1979)) is par­

ticularly useful for optimization problems without reference to individual preferences 

, while the stochastic discoimt factor representation (Cox and Leland (1982), Dybvig 

(1980, 1985)) is most iiseful when dealing with choice problems . 

To derive the risk-neutral representation, let us divide both sides of equation (B.l) 

by Ef=i 

i = l , 2 , . . . , N .  (B.2) 
^ Es=i ^(s) E?=i 0(s) 

Let 7r*(s) = Then equation (B.2) can be written as 
1^3=1 

i = (B.3) 
5=1 ^5=1 ̂ (S) 

It is easy to see that 7r*(s) > 0 for all s and that Ef=i — 1- Therefore, tt* can 

be interpreted as an artificial probability measure. Fiurthermore, it can be shown that 

Ef=i ^{s) = r~^ if there exists a gross riskless rate r. The above argiunents allow us to 

wTite equation (B.3) in the following equivalent way: 

^TT- -RR r = 1, i = 1,2,....7V, (B.4) 

where E-r^- denotes the expectation under the artificial probability measure TT*. In 

finance literature, TT* is conventionally referred as the risk-neutral (or martingale) prob­

ability measure. It is important to note that TT* is generally difiFerent from the tnie 

probability measure TT over states of the world. 
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To derive the stochastic discount factor representation, let m{s) = tl}{s)/7r{s). Here 

7r(s) is the true probability that state s will occur. Equation (B.l) can then be written 

as 
s 
^7r(s)m(s)i?,(5) = 1, i = l,2,...,N, (B.5) 
S=l 

or, equivalently, 

E-jrimR,) = l, i = (B.6) 

Here E-jr denotes the expectation with respec;t to the true probability measure tt over 

states of the world. 

The relationships among the three asset pricing representations are stated in the 

following Pricing Rule Representation Theorem (Dyb\ag and Ross (1992)). 

Theorem 2 The following are equivalent: 
• Existence of a positive linear pricing rule 
• Existence of positive risk-neutral probabilities and an associated riskless rate (the 

martingale property) 
• Existence of a positive stochastic discount factor 
Both the risk-neutral representation and the stochastic discoimt factor representation 

are used in this study. When testing the spanning assiunption on physical investment 

returns and equity returns, I apply entropic principles to recover and compare the risk-

noutral probability measures of the two markets. The risk-neutral representation is iised 

because it fits the entropic framework best among the three pricing rule representations. 

When studying the validity of the physical investment factor pricing model, I adopt the 

stochastic discoimt factor representation since it fits into the GMM framework naturally. 
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